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Chapter 7

Extensions of Basic Motion
Planning

This chapter presents many extensions and variations of thmotion planning
problem considered in Chapters 3 to 6. Each one of these can ¢mnsidered
as a \spin-o " that is fairly straightforward to describe using the mathematical
concepts and algorithms introduced so far. Unlike the previs chapters, there
is not much continuity in Chapter 7. Each problem is treated ndependently;
therefore, it is safe to jump to whatever sections in the chégr you nd interesting
without fear of missing important details.

In many places throughout the chapter, a state spacé will arise. This is con-
sistent with the general planning notation used throughouthe book. In Chapter

4, the C-space,C, was introduced, which can be considered as a special state

space: It encodes the set of transformations that can be apul to a collection
of bodies. Hence, Chapters 5 and 6 addressed planningXin= C. The C-space
alone is insu cient for many of the problems in this chapter;therefore, X will

be used because it appears to be more general. For most casethis chapter,
however, X is derived from one or more C-spaces. Thus, C-space and stspace
terminology will be used in combination.

7.1 Time-Varying Problems

This section brings time into the motion planning formulaton. Although the

robot has been allowed to move, it has been assumed so far thlaé obstacle
region O and the goal con guration, gz 2 Ciee, are stationary for all time. It

is now assumed that these entities may vary over time, althgh their motions

are predictable. If the motions are not predictable, then sne form of feedback is
needed to respond to observations that are made during exéion. Such problems
are much more di cult and will be handled in Chapters 8 and thioughout Part

V.

311

312 S. M. LaValle: Planning Algorithms

7.1.1 Problem Formulation

The formulation is designed to allow the tools and conceptsdrned so far to be
applied directly. Let T R denote thetime interval, which may beboundedor
unbounded If T is bounded, thenT =]0;t;], in which O is theinitial time and t;
is the nal time . If T is unbounded, thenT =[0;1 ). An initial time other than
0 could alternatively be de ned without di culty, but this w ill not be done here.

Let the state spaceX be dened asX = C T, in which Cis the usual C-
space of the robot, as de ned in Chapter 4. A stat& is represented ax = (q; 1),
to indicate the con guration g and time t components of the state vector. The
planning will occur directly in X, and in many ways it can be treated as any
C-space seen to far, but there is one critical di erenceTime marches forward
Imagine a path that travels throughX . If it rst reaches a state (t;5), and then
later some state €p; 3), some traveling backward through time is required! There
is no mathematical problem with allowing such time travel, bt it is not realistic
for most applications. Therefore, paths irX are forced to follow a constraint that
they must move forward in time.

Now consider making the following time-varying versions ohe items used in
Formulation 4.1 for motion planning.

Formulation 7.1 (The Time-Varying Motion Planning Problem )

1. A world W in which either W = R? or W = R3. This is the same as in
Formulation 4.1.

2. Atime interval T R that is either boundedto yield T = [0;t;] for some
nal time, t; > 0, or unboundedto yield T =[0;1 ).

3. A semi-algebraic, time-varyingobstacle regiorO(t) W foreveryt2 T. It
is assumed that the obstacle region is a nite collection ofgid bodies that
undergoes continuous, time-dependent rigid-body transfoations.

4. TherobhotA (or A4, :::, Ay, for a linkage) andcon guration space C de ni-
tions are the same as in Formulation 4.1.

5. The state spaceX is the Cartesian productX = C T and a statex 2 X is
denoted asx = ( ;1) to denote the con guration g and time t components.
See Figure 7.1. The obstacle regioiX, s, in the state space is de ned as

Xobs= f(q;0) 2 X jA(g)\O (1) 6 ;9; (7.1)

and Xgee = X NXgpse FOr agivent 2 T, slices ofX s and Xgee are
obtained. These are denoted a&s(t) and G (t), respectively, in which
(assumingA is one body)

Cobs(t) = fq2CjA(x)\O (1) 6 ;g (7.2)
and Gree = C N Gps.
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Figure 7.1: A time-varying example with piecewise-linearbstacle motion.

6. A statex; 2 Xsee IS designated as thénitial state, with the constraint that
X; = (q;0) for someq 2 Ciee (0). In other words, at the initial time the
robot cannot be in collision.

7. A subsetXs X is designated as thegoal region A typical de nition
is to pick someqs 2 C and let Xg = f(0s;t) 2 Xfee j t 2 Tg, which means
that the goal is stationary for all time.

8. A complete algorithm must compute a continuous, time-maionic path,
[0;1] ' Xfree, such that (0) = x;, and (1) 2 Xg, or correctly report
that such a path does not exist. To béime-monotonic implies that for any
S1;S, 2 [0;1] such thats; < s,, we havet; < t,, in which (qu;t;) = (s1)
and (p;t2) = (s2).

Example 7.1 (Piecewise-Linear Obstacle Motion) Figure 7.1 shows an ex-
ample of a convex, polygonal robof that translates in W = R?. There is a
single, convex, polygonal obstacl®. The two of these together yield a convex,
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polygonal C-space obstacle,ps(t), which is shown for timest,, t,, and t3. The
obstacle moves with gpiecewise-linear motion modelwhich means that transfor-
mations applied to O are a piecewise-linear function of time. For example, let
(x;y) be a xed point on the obstacle. To be a linear motion model,his point
must transform as &+ c;t;y + c,t) for some constants;; ¢, 2 R. To be piecewise-
linear, it may change to a dierent linear motion at a nite number of critical
times. Between these critical times, the motion must remaitinear. There are
two critical times in the example. If G4(t) is polygonal, and a piecewise-linear
motion model is used, thenX o, is polyhedral, as depicted in Figure 7.1. A sta-
tionary goal is also shown, which appears as a line that is @dlel to the T-axis.

In the general formulation, there are no additional constiats on the path,

, which means that the robot motion model allows in nite accleration and

unbounded speed. The robot velocity may change instantanesiy, but the path

through C must always be continuous. These issues did not arise in Cheyp4
because there was no need to mention time. Now it becomes neaeg

7.1.2 Direct Solutions

Sampling-based methods  Many sampling-based methods can be adapted from
Cto X without much di culty. The time dependency of obstacle modés must
be taken into account when verifying that path segments areotision-free; the
techniques from Section 5.3.4 can be extended to handle thi®ne important
concern is the metric forX . For some algorithms, it may be important to permit
the use of a pseudometric because symmetry is broken by tingoing backward
in time is not as easy as going forward).

For example, suppose that the C-spadg is a metric space, C, ). The metric
can be extended across time to obtain a pseudometrig;, as follows. For a pair
of states,x = (q;t) and x°= (%19, let

8
<0 if q= ¢

x(x;x9= 1 if g6 ®andt® t (7.3)
" (g;d) otherwise

Using x, several sampling-based methods naturally work. For examep RDTs
from Section 5.5 can be adapted t& . Using x for a single-tree approach ensures
that all path segments travel forward in time. Using bidirecional approaches

1The in nite acceleration and unbounded speed assumptions ray annoy those with mechanics
and control backgrounds. In this case, assume that the prese models approximate the case in
which every body moves slowly, and the dynamics can be conseently neglected. If this is still
not satisfying, then jump ahead to Part IV, where general norinear systems are considered. It
is still helpful to consider the implications derived from the concepts in this chapter because the
issues remain for more complicated problems that involve dyamics.
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is more di cult for time-varying problems because X is usually not a single
point. It is not clear which (q;t) should be the starting vertex for the tree from
the goal; one possibility is to initialize the goal tree to arentire time-invariant
segment. The sampling-based roadmap methods of Section &ré perhaps the
most straightforward to adapt. The notion of adirected roadmapis needed, in
which every edge must be directed to yield a time-monotoniath. For each pair
of states, @;t) and (¢%19, such that t 6 t% exactly one valid direction exists for

making a potential edge. It = t° then no edge can be attempted because it would

require the robot to instantaneously \teleport" from one pat of W to another.

Since forward time progress is already taken into account lilie directed edges,
a symmetric metric may be preferable instead of (7.3) for theampling-based
roadmap approach.

Combinatorial methods
to solve time-varying problems. If the motion model islgebraic(i.e., expressed
with polynomials), then Xps is semi-algebraic. This enables the application of
general planners from Section 6.4, which are based on congtidnal real alge-
braic geometry. The key issue once again is that the resulgjrroadmap must be
directed with all edges being time-monotonic. For Canny'soadmap algorithm,
this requirement seems di cult to ensure. Cylindrical algbraic decomposition is
straightforward to adapt, provided that time is chosen as th last variable to be
considered in the sequence of projections. This yields podmials in Q[t], and R
is nicely partitioned into time intervals and time instance. Connections can then
be made for a cell of one cylinder to an adjacent cell of a cyier that occurs
later in time.

If X obs IS polyhedral as depicted in Figure 7.1, then vertical decquosition can
be used. It is best to rst sweep the plane along the time axistopping at the
critical times when the linear motion changes. This yieldsice sections, which are
further decomposed recursively, as explained in SectiorB&, and also facilitates
the connection of adjacent cells to obtain time-monotonicgih segments. It is not
too di cult to imagine the approach working for a four-dimensional state space,
X, for which Gyg(t) is polyhedral as in Section 6.3.3, and time adds the fourth
dimension. Again, performing the rst sweep with respect to he time axis is
preferable.

If X is not decomposed into cylindrical slices over each nonacdl time inter-
val, then cell decompositions may still be used, but be catgfto correctly connect
the cells. Figure 7.2 illustrates the problem, for which trasitivity among adjacent
cells is broken. This complicates sample point selectiorr fine cells.

Bounded speed There has been no consideration so far of the speed at which

the robot must move to avoid obstacles. It is obviously imp@ical in many
applications if the solution requires the robot to move arliarily fast. One step
toward making a realistic model is to enforce a bound on the spd of the robot.

In some cases, combinatorial methods can be used
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Figure 7.2: Transitivity is broken if the cells are not formd in cylinders overT.
A time-monotonic path exists fromC; to C,, and from C, to Cj, but this does
not imply that one exists fromC; to Cs.

(More steps towards realism are taken in Chapter 13.) For sjplicity, suppose
C= R?, which corresponds to a translating rigid robotA, that moves inW = R2,
A con guration, q 2 C, is represented ag) = (y;z) (since x already refers to the
whole state vector). Therobot velocityis expresseq)as = (y;2) 2 R?, in which
y = dy=dtand z = dz=dt The robot speeds kvk = = y2+ z2. A speed boundb,
is a positive constant,b2 (0;1 ), for which kvk b

In terms of Figure 7.1, this means that the slope of a solutiopath is
bounded. Suppose that the domain of is T = [0;t¢] instead of [Q1]. This
yields :T! X and (t) =(y;z;t). Using this representation,d ;=dt= y and
d ,=dt = z, in which ; denotes theith component of (because it is a vector-
valued function). Thus, it can seen thatb constrains the slope of (t) in X. To
visualize this, imagine that only motion in they direction occurs, and suppose
b= 1. If holds the robot xed, then the speed is zero, which satis esng
bound. If the robot moves at speed 1, thew ;=dt = 1 and d ,=dt = 0, which
satis es the speed bound. In Figure 7.1 this generates a patiat has slope 1 in
the yt plane and is horizontal in thezt plane. If d ;=dt = d ,=dt = 1, then the
bound is exceeded because the speed 8. In general, the velocity vector at any
state (y; z;t) points into a cone that starts at (y; z) and is aligned in the positive
t direction; this is depicted in Figure 7.3. At timet + t, the state must stay
within the cone, which means that

yit+ 1) yt) P+ zt+ 1) zZ(t) B H* (7.4)

This constraint makes it considerably more di cult to adapt the algorithms of
Chapters 5 and 6. Even for piecewise-linear motions of thegthacles, the problem
has been established to be PSPACE-hard [116, 117, 129]. A pbate algorithm
is presented in [117] that is similar to the shortest-path @dmap algorithm of

Section 6.2.4. The sampling-based roadmap of Section 5.6e&rhaps one of the
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Figure 7.3: A projection of the cone constraint for the bouretl-speed problem.

easiest of the sampling-based algorithms to adapt for thisghblem. The neighbors
of point g, which are determined for attempted connections, must lieithin the
cone that represents the speed bound. If this constraint i;forced, a resolution
complete or probabilistically complete planning algoritim results.

7.1.3 The Velocity-Tuning Method

An alternative to de ning the problem in C T is to decouple it into a path
planning part and a motion timing part [82]. Algorithms based on this method
are not complete, but velocity tuning is an important idea tlat can be applied
elsewhere. Suppose there are bo#tationary obstaclesand moving obstacles
For the stationary obstacles, suppose that some path: [0;1] ! C e has been
computed using any of the techniques described in Chaptersabd 6.

The timing part is then handled in a second phase. Designtening function
(or time scaling, : T ! [0;1], that indicates for time, t, the location of the
robot along the path, . This is achieved by de ning the composition = ,
which maps fromT to Gee Via [0;1]. Thus, :T!C fe . The con guration at
time t 2 T is expressed as(t) = ( (t)).

A 2D state space can be de ned as shown in Figure 7.4. The pusgmis to
convert the design of (and consequently ) into a familiar planning problem.
The robot must move along its path from (0) to (1) while an obstacle,O(t),
moves along its path over the time intervalT. Let S = [0; 1] denote the domain
of . Astate spaceX = T S, is shown in Figure 7.4b, in which each pointt(s)
indicates the timet 2 T and the position along the path,s 2 [0; 1]. The obstacle
region in X is de ned as

Xobs = f(t;5) 2 X JA( (s)\O (1) 6 ;g: (7.5)

Once againXree is de ned asXgee = X NXqps. The task is to nd a continuous
path g: [0;1]! Xjee. If gis time-monotonic, then a positions 2 S is assigned
for every time,t 2 T. These assignments can be nicely organized into the timing
function, :T! S, from which is obtained by = to determine where
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Figure 7.4: An illustration of path tuning. (a) If the robot follows its computed
path, it may collide with the moving obstacle. (b) The resuling state space.

the robot will be at each time. Being time-monotonic in this ontext means that
the path must always progress from left to right in Figure 7 4. It can, however,
be nonmonotonic in the positives direction. This corresponds to moving back
and forth along , causing some con gurations to be revisited.

Any of the methods described in Formulation 7.1 can be appliddere. The
dimension ofX in this case is always 2. Note thak o5 is polygonal if A and O
are both polygonal regions and their paths are piecewisediar. In this case, the
vertical decomposition method of Section 6.2.2 can be apgdi by sweeping along
the time axis to yield a complete algorithm (it is complete @ér having committed
to , but it is not complete for Formulation 7.1). The result is slown in Figure
7.5. The cells are connected only if it is possible to reach effrom the other
by traveling in the forward time direction. As an example of a ampling-based
approach that may be preferable wheiX s is not polygonal, place a grid oveX
and apply one of the classical search algorithms describedSection 5.4.2. Once
again, only path segments irX that move forward in time are allowed.

7.2 Multiple Robots

Suppose that multiple robots share the same worldly . A path must be computed
for each robot that avoids collisions with obstacles and wit other robots. In
Chapter 4, each robot could be a rigid bodyA, or it could be made ofk attached

bodies,A, :::, Ak. To avoid confusion, superscripts will be u.sed in this seot
to denote di erent robots. The ith robot will be denoted by A'. Suppose there
are m robots, A, A2, :::;, A™. Each robot, A', has its associated C-space,

and its initial and goal con gurations, ¢, and qigoa,, respectively.
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Figure 7.5: Vertical cell decomposition can solve the pathuhing problem. Note
that this example is not in general position because verticadges exist. The goal
is to reach the horizontal line at the top, which can be accontiphed from any
adjacent 2-cell. For this example, it may even be accomplisti from the rst 2-cell
if the robot is able to move quickly enough.

t

7.2.1 Problem Formulation

A state space is de ned that considers the con gurations ofllarobots simultane-
ously,

X=Cc Cc? c ™ (7.6)

A state x 2 X species all robot con gurations and mgy be expressed as =
(g% ¢ ::1; ™). The dimension ofX is N, whichisN = dim(C).

There are two sources of obstacle regions in the state spatgrobot-obstacle
collisions, and 2)robot-robotcollisions. For each suchthatl i m, the subset
of X that corresponds to robotA' in collision with the obstacle region0Q, is
=fx2 X jA'(d)\O 6 ;g: (7.7

i
obs

This only models the robot-obstacle collisions.
For each pair,A' and Al, of robots, the subset ofX that corresponds toA'
in collision with A! is

Xaps= fX 2 X JA'(d)\A I(d) 6 ig: (7.8)
Both (7.7) and (7.8) will be combined in (7.10) later to yieldX gps.
Formulation 7.2 (Multiple-Robot Motion Planning)

1. Theworld W and obstacle regiorO are the same as in Formulation 4.1.
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2. There arem robots A?, :::, A™, each of which may consist of one or more
bodies.

3. Each robotA', for i from 1 to m, has an associatedon guration space C.
4. The state spaceX is de ned as the Cartesian product
X=C Cc? c ™ (7.9)
The obstacle region inX is
" i O i .
Xops = obs Xops (7.10)
i=1 ij; i 6]

in which X |, and X . . are the robot-obstacle and robot-robot collision states

from (7.7) and (7.8), respectively.

7. The task is to compute a continuous path : [0;1] ! Xfee such that
(0) = Xinit and (1) 2 Xgoal-

An ordinary motion planning problem? On the surface it may appear that
there is nothing unusual about the multiple-robot problem bcause the formu-
lations used in Chapter 4 already cover the case in which thebot consists of
multiple bodies. They do not have to be attached; thereforel can be considered
as an ordinary C-space. The planning algorithms of Chaptes and 6 may be
applied without adaptation. The main concern, however, ishat the dimension

of X grows linearly with respect to the number of robots. For exapie, if there

are 12 rigid bodies for which each ha€ = SE(3), then the dimension ofX is

6 12 = 72. Complete algorithms require time that is at least expnential in

dimension, which makes them unlikely candidates for suchgilems. Sampling-
based algorithms are more likely to scale well in practice wh there many robots,
but the dimension of X might still be too high.

Reasons to study multi-robot motion planning Even though multiple-
robot motion planning can be handled like any other motion pihning problem,
there are several reasons to study it separately:

1. The motions of the robots can be decoupled in many interé@sg ways. This
leads to several interesting methods that rst develop somleénd of partial
plan for the robots independently, and then consider the ptainteractions
to produce a solution. This idea is referred to adecoupled planning
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Figure 7.6: The setX ,_ and its cylindrical structure on X .

2. The part of X,,s due to robot-robot collisions has a cylindrical structure,
depicted in Figure 7.6, which can be exploited to make more eient plan-
ning algorithms. EachX ., de ned by (7.8) depends only on two robots. A
point, x = (o;:::;gM), is in Xops if there existsi;j such that 1 ;] m
and A'(d)\A I(d) 6 ;, regardless of the con gurations of the othem 2
robots. For some decoupled methods, this even implies thXt,,s can be

completely characterized by 2D projections, as depicted Figure 7.9.

3. If optimality is important, then a unique set of issues ases for the case
of multiple robots. It is not a standard optimization problem because the
performance of each robot has to be optimized. There is no ateway to
combine these objectives into a single optimization probie without los-
ing some critical information. It will be explained in Secthn 7.7.2 that
Pareto optimality naturally arises as the appropriate notn of optimality
for multiple-robot motion planning.

Assembly planning One important variant of multiple-robot motion planning
is calledassembly planningrecall from Section 1.2 its importance in applications.
In automated manufacturing, many complicated objects aressembled step-by-
step from individual parts. It is convenient for robots to maipulate the parts
one-by-one to insert them into the proper locations (see Sen 7.3.2). Imagine
a collection of parts, each of which is interpreted as a roboas shown in Figure
7.7a. The goal is to assemble the parts into one coherent offjesuch as that
shown in Figure 7.7b. The problem is generally approached lstarting with
the goal con guration, which is tightly constrained, and woking outward. The
problem formulation may allow that the parts touch, but ther interiors cannot
overlap. In general, the assembly planning problem with aitoarily many parts
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Figure 7.7: (a) A collection of pieces used to de ne an asselyiplanning problem;
(b) assembly planning involves determining a sequence of tioos that assembles
the parts. The object shown here is assembled from the parts.

]

is NP-hard. Polynomial-time algorithms have been developed several special
cases. For the case in which parts can be removed by a sequerfcstraight-line
paths, a polynomial-time algorithm is given in [133, 134].

7.2.2 Decoupled planning

Decoupled approaches rst design motions for the robots waiignoring robot-
robot interactions. Once these interactions are considetethe choices available
to each robot are already constrained by the designed mot®nif a problem arises,
these approaches are typically unable to reverse their coritments. Therefore,
completeness is lost. Nevertheless, decoupled approachesaaite practical, and
in some cases completeness can be recovered.

Prioritized planning A straightforward approach to decoupled planning is to
sort the robots by priority and plan for higher priority robots rst [50, 130]. Lower
priority robots plan by viewing the higher priority robots as moving obstacles.
Suppose the robots are sorted &, :::, A™, in which A® has the highest priority.
Assume that collision-free paths,; : [0;1]! C /..., have been computed for
from 1 to n. The prioritized planning approach proceeds inductively safollows:

Base case: Use any motion planning algorithm from Chapters 5 and 6 to
compute a collision-free path, ; : [0;1]! C {., for AL. Compute a timing

function, 4, for ;,toyield ;= ; :T!C}.,.

Inductive step: Suppose that 1, :::;, ; 1 have been designed fok?, :::,
A" 1 and that these functions avoid robot-robot collisions beteen any of
the rst i 1 robots. Formulate the rsti 1 robots as moving obstacles
19, the con guration ¢ of each
Alis ;(t). Thisyields Al( ;(t)) W , which can be considered as a subset
of the obstacleO(t). Design a path, ;, and timing function, ;, using any
of the time-varying motion planning methods from Section 7. and form
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Figure 7.8: If A® neglects the query forA2, then completeness is lost when using
the prioritized planning approach. This example has a solign in general, but
prioritized planning fails to nd it.

Although practical in many circumstances, Figure 7.8 illusates how completeness
is lost.
A special case of prioritized planning is to design all of thgaths, 1, 5, :::,

m, in the rst phase and then formulate each inductive step as gelocity tuning
problem. This yields a sequence of 2D planning problems thaan be solved
easily. This comes at a greater expense, however, because thoices are even
more constrained. The idea of preplanned paths, and even dmaaps, for all robots
independently can lead to a powerful method if the coordinain of the robots is
approached more carefully. This is the next topic.

Fixed-path coordination Suppose that each roboA' is constrained to follow
apath ;:[0;1]! C .., which can be computed using any ordinary motion plan-
ning technique. Form robots, anm-dimensional state space called eoordination
spaceis de ned that schedules the motions of the robots along thepaths so that
they will not collide [109]. One important feature is that time will only be implic-
itly represented in the coordination space. An algorithm must cqmte a path in
the coordination space, from which explicit timings can beasily extracted.

For m robots, the coordination spaceX is de ned as them-dimensional unit
cube X = [0;1]". Figure 7.9 depicts an example for whicilm = 3. The ith
coordinate of X represents the domainS; = [0; 1], of the path ;. Let s; denote
a point in S; (it is also the ith component ofx). A state, x 2 X, indicates the
con guration of every robot. For eachi, the con guration g 2 C' is given by

q = i(s). Atstate (0;:::;0) 2 X, every robot is in its initial con guration,

g = i(0), and at state (L:::;1) 2 X, every robot is in its goal con guration,
d; = i(1). Any continuous path, h: [0;1]! X, for which h(0) = (0;:::;0) and
h(1) =(1;:::;1), moves the robots to their goal con gurations. The patth does

not even need to be monotonic, in contrast to prioritized planing.

One important concern has been neglected so far. What pretgrus from
designingh as a straight-line path between the opposite corners of;[0"? We
have not yet taken into account the collisions between the bots. This forms
an obstacle regionX ps that must be avoided when designing a path througlX .
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Figure 7.9: The obstacles that arise from coordinatinm robots are always cylin-
drical. The set of all %m(m 1) axis-aligned 2D projections completely charac-
terizes X gps.

Thus, the task is to designh : [0; 1]!  Xjee , In Which Xfree = X N X gps.

The de nition of X s is very similar to (7.8) and (7.10), except that here the
state-space dimension is much smaller. Eachis replaced by a single parameter.
The cylindrical structure, however, is still retained, assown in Figure 7.9. Each
cylinder of X s is

XY= f(suimsm) 2 X JAICis) VA I((s)) 6 :9; (7.12)
which are combined to yield

[ )
X ops = X (7.12)
ii i 6

Standard motion planning algorithms can be applied to the @ydination space
because there is no monotonicity requirement oh. If 1) W = R?, 2) m = 2
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(two robots), 3) the obstacles and robots are polygonal, ard) the paths, ;, are
piecewise-linear, therX s is a polygonal region inX . This enables the methods
of Section 6.2, for a polygonal,,s, to directly apply after the representation of
X ops IS €xplicitly constructed. Form > 2, the multi-dimensional version of vertical
cell decomposition given fom = 3 in Section 6.3.3 can be applied. For general
coordination problems, cylindrical algebraic decomposin or Canny's roadmap
algorithm can be applied. For the problem of robots ilW = R? that either
translate or move along circular paths, a resolution compke planning method
based on the exact determination oX ous Using special collision detection methods
is given in [123].

For very challenging coordination problems, sampling-bad solutions may
yield practical solutions. Perhaps one of the simplest sdilons is to place a
grid over X and adapt the classical search algorithms, as described iecBon
5.4.2 [93, 109]. Other possibilities include using the RDTaf Section 5.5 or, if
the multiple-query framework is appropriate, then the samjng-based roadmap
methods of 5.6 are suitable. Methods for validating the patlsegments, which
were covered in Section 5.3.4, can be adapted without troebto the case of co-
ordination spaces.

Thus far, the particular speeds of the robots have been negfed. For expla-
nation purposes, consider the case of = 2. Moving vertically or horizontally in
X holds one robot xed while the other moves at some maximum spé&. Moving
diagonally in X moves both robots, and their relative speeds depend on thepgé
of the path. To carefully regulate these speeds, it may be ressary to reparam-
eterize the paths by distance. In this case each axis Xf represents the distance
traveled, instead of [Q1].

Fixed-roadmap coordination The xed-path coordination approach still may

not solve the problem in Figure 7.8 if the paths are designeddependently. For-

tunately, xed-path coordination can be extended to enableach robot to move
over a roadmap or topological graph. This still yields a codmation space that

has only one dimension per robot, and the resulting planningethods are much
closer to being complete, assuming each robot utilizes a dvaap that has many

alternative paths. There is also motivation to study this poblem by itself because
of automated guided vehicles (AGVs), which often move in fagties on a network
of predetermined paths. In this case, coordinating the rol® is the planning

problem, as opposed to being a simpli cation of Formulatiorn.2.

One way to obtain completeness for Formulation 7.2 is to degi the indepen-
dent roadmaps so that each robot has its owgaragecon guration. The conditions
for a con guration, d, to be agaragefor A' are 1) while at con guration ¢, it is
impossible for any other robots to collide with it (i.e., in # coordination states for
which the ith coordinate isg, no collision occurs); and 2)j is always reachable
by A" from x,. If each robot has a roadmap and a garage, and if the planning
method for X is complete, then the overall planning algorithm is complet If the
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planning method in X uses some weaker notion of completeness, then this is also
maintained. For example, a resolution complete planner fof yields a resolution
complete approach to the problem in Formulation 7.2.

Cube complex How is the coordination space represented when there are mul-
tiple paths for each robot? It turns out that a cube complexs obtained, which is
a special kind of singular complex (recall from Section 613. The coordination
space form xed paths can be considered as a singulan-simplex. For example,
the problem in Figure 7.9 can be considered as a singular gplex, [0 1F! X.
In Section 6.3.1, the domain of &-simplex was de ned using8, a k-dimensional
ball; however, a cube, [0L], also works becausB* and [0, 1]¢ are homeomorphic.
For a topological spaceX, let a k-cube (which is also a singulark-simplex),
k, be a continuous mapping : [0;1F ! X. A cube complex is obtained by
connecting togetherk-cubes of di erent dimensions. Everk-cube fork 1 has
2k faces which are kK 1)-cubes that are obtained as follows. Lets{;:::;s«)

si = 0 and another is obtained by settings; = 1.

The cubes must t together nicely, much in the same way that te simplexes
of a simplicial complex were required to t together. To be acube complexK
must be a collection of simplexes that satisfy the followingequirements:

1. Any face, ¢ 1, of acube 2K is also inK.

2. The intersection of the images of any twk-cubes ; ? 2 K, is either
empty or there exists some cube,; 2 K for i <k, which is a common face
of both and .

Let G denote a topological graph (which may also be a roadmap) foolrot
A'. The graph edges are paths of the form : [0;1] ! C /... Before covering
formal de nitions of the resulting complex, consider Figug 7.10a, in whichA*
moves along three paths connected in a \T" junction andA? moves along one
path. In this case, three 2D xed-path coordination spacesra attached together
along one common edge, as shown in Figure 7.10b. The resgtoube complex is
de ned by three 2-cubes (i.e., squares), one 1-cube (i.end segment), and eight
0-cubes (i.e., corner points).

Now suppose more generally that there are two roboté,* and A2, with asso-
ciated topological graphsG,(Vi1; E1) and G(Vs; E»), respectively. Suppose thaG
and G, haven; and n; edges, respectively. A 2D cube compleK, is obtained as
follows. Let ; denote theith path of G, and let ; denote thejth path of G,. A
2-cube (square) exists ifK for every way to select an edge from each graph. Thus,
there arenin, 2-cubes, one for each pair {; ), such that ; 2 E; and ; 2 E,.
The 1-cubes are generated for pairs of the fornwi( ;) for v 2 Vi and j 2 Ey,
or (i;vj) for ; 2 E; andv; 2 V,. The O-cubes (corner points) are reached for
each pair {;v;) such thatv; 2 V; and vj 2 V.
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Figure 7.10: (a) An example in whichA® moves along three paths, ané? moves
along one. (b) The corresponding coordination space.

If there are m robots, then an m-dimensional cube complex arises. Every
m-cube corresponds to a unique combination of paths, one fach robot. The
(m 1)-cubes are the faces of thm-cubes. This continues iteratively until the
0-cubes are reached.

Planning on the cube complex Once again, any of the planning methods
described in Chapters 5 and 6 can be adapted here, but the metts are slightly
complicated by the fact that X is a complex. To use sampling-based methods,
a dense sequence should be generated oXer For example, if random sampling
is used, then anm-cube can be chosen at random, followed by a random point
in the cube. The local planning method (LPM) must take into acount the con-
nectivity of the cube complex, which requires recognizinghgn branches occur in
the topological graph. Combinatorial methods must also takinto account this
connectivity. For example, a sweeping technique can be ajgul to produce a ver-
tical cell decomposition, but the sweep-line (or sweep-pla) must sweep across
the various m-cells of the complex.

7.3 Mixing Discrete and Continuous Spaces

Many important applications involve a mixture of discrete ad continuous vari-
ables. This results in a state space that is a Cartesian produof the C-space
and a nite set called the mode space The resulting space can be visualized as
having layers of C-spaces that are indexed by the modes, apidéed in Figure
7.11. The main application given in this section is maniputan planning; many
others exist, especially when other complications such agmmics and uncertain-
ties are added to the problem. The framework of this sectios inspired mainly
from hybrid systemsin the control theory community [69], which usually model
mode-dependent dynamics. The main concern in this sectianthat the allowable
robot con gurations and/or the obstacles depend on the mode

328 S. M. LaValle: Planning Algorithms

C

) .
F O e @

Modes Layers

3
I
w

3
I
N

Figure 7.11: A hybrid state space can be imagined as having/das of C-spaces
that are indexed by modes.

7.3.1 Hybrid Systems Framework

As illustrated in Figure 7.11, a hybrid system involves inteaction between dis-
crete and continuous spaces. The formal model will rst be gn, followed by
some explanation. This formulation can be considered as anagination of the
components from discrete feasible planning, Formulation.2 and basic motion
planning, Formulation 4.1.

Formulation 7.3 (Hybrid-System Motion Planning)
1. The W and C components from Formulation 4.1 are included.
2. A nonemptymode spaceM that is a nite or countably in nite set of modes
3. A semi-algebraicobstacle regionO(m) for eachm 2 M.

4. A semi-algebraicrobot A(m), for eachm 2 M. It may be a rigid robot or
a collection of links. It is assumed that the C-space is not rde-dependent;
only the geometry of the robot can depend on the mode. The rahdrans-
formed to con guration g, is denoted asA (q; m).

5. A state spaceX is de ned as the Cartesian produciX = C M. A state is
represented ax = (g; m), in whichg2Candm 2 M. Let

Xobs= f(q;m) 2 X jA(q;m\O (m) 6 ;9; (7.13)
and Xfree = X N Xgps

6. For each statex 2 X, there is a nite action space U(x). Let U denote the
set of all possible actions (the union ofJ(x) over all x 2 X).
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7. There is amode transition functionf ., that produces a modef ,(x;u) 2 M,
foreveryx 2 X andu 2 U(x). Itis assumed thatf , is de ned in a way that
does not produce race conditions (oscillations of modes kit an instant of
time). This means that if g is xed, the mode can change at most once. It
then remains constant and can change only @ is changed.

8. There is astate transition function, f, that is derived from f,, by changing
the mode and holding the con guration xed. Thus,f (x;u) = ( q; fm(X; u)).

9. A conguration X; 2 Xyee is designated as thenitial state.

10. AsetXs 2 X¢ee is designated as thgoal region A region is de ned instead
of a point to facilitate the speci cation of a goal con guration that does not
depend on the nal mode.

11. An algorithm must compute a (continuous)path  : [0;1]! Xgee and an
action trajectory :[0;1]! U such that (0) = x; and (1) 2 Xg, or the
algorithm correctly reports that such a combination of a pdt and an action
trajectory does not exist.

The obstacle region and robot may or may not be mode-dependetepending
on the problem. Examples of each will be given shortly. Chaag in the mode
depend on the action taken by the robot. From most states, isiusually assumed
that a \do nothing" action exists, which leaves the mode undmnged. From certain
states, the robot may select an action that changes the mode aesired. An
interesting degenerate case exists in which there is only iagle action available.
This means that the robot has no control over the mode from thestate. If the
robot arrives in such a state, a mode change could unavoidgtdccur.

The solution requirement is somewhat more complicated becse both a path
and an action trajectory need to be specied. It is insu ciert to specify a path
because it is important to know what action was applied to indce the correct
mode transitions. Therefore, indicates when these occur. Note that and
are closely coupled; one cannot simply associate anywith a path ; it must
correspond to the actions required to generate

Example 7.2 (The Power of the Portiernia) In this example, a robot,A, is

modeled as a square that translates iW = R2. Therefore,C= R?. The obstacle
region in W is mode-dependent because of two doors, which are numberdd \
and \2" in Figure 7.12a. In the upper left sits the portiernia,? which is able to

give a key to the robot, if the robot is in a con guration as shan in Figure 7.12b.

The portiernia only trusts the robot with one key at a time, whch may be either

for Door 1 or Door 2. The robot can return a key by revisiting tle portiernia. As

shown in Figures 7.12c and 7.12d, the robot can open a door byking contact

with it, as long as it holds the correct key.

2This is a place where people guard the keys at some public fdities in Poland.
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(b)

(©) (d)

Figure 7.12: In the upper left (at the portiernia), the robotcan pick up and drop
o0 keys that open one of two doors. If the robot contacts a doowhile holding
the correct key, then it opens.

The set,M, of modes needs to encode which key, if any, the robot holdsida
it must also encode the status of the doors. The robot may havé) the key to
Door 1; 2) the key to Door 2; or 3) no keys. The doors may have thstatus: 1)
both open; 2) Door 1 open, Door 2 closed; 3) Door 1 closed, D&open; or 4)
both closed. Considering keys and doors in combination yiksl 12 possible modes.

If the robot is at a portiernia con guration as shown in Figue 7.12b, then its
available actions correspond to di erent ways to pick up andirop o keys. For
example, if the robot is holding the key to Door 1, it can droptio and pick
up the key to Door 2. This changes the mode, but the door statusnd robot
con guration must remain unchanged wherf is applied. The other locations in
which the robot may change the mode are when it comes in contagith Door 1
or Door 2. The mode changes only if the robot is holding the pper key. In all
other con gurations, the robot only has a single action (i.e no choice), which
keeps the mode xed.

The task is to reach the con guration shown in the lower rightwith dashed
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lines. The problem is solved by: 1) picking up the key for Dodr at the portiernia;
2) opening Door 1; 3) swapping the key at the portiernia to olin the key for
Door 2; or 4) entering the innermost room to reach the goal ca@uration. As a
nal condition, we might want to require that the robot retur ns the key to the
portiernia.

Compressed

Elongated

Figure 7.13: An example in which the robot must recon gure itslf to solve the
problem. There are two modeselongatedand compressed

[ —

Elongated mode Compressed mode

Figure 7.14: When the robot recon gures itselfGee (M) changes, enabling the
problem to be solved.

Example 7.2 allows the robot to change the obstacles @. The next example
involves a robot that can change its shape. This is an illusitive example of
a recon gurable robot The study of such robots has become a popular topic of
research [33, 63, 88, 137]; the recon guration possibiés in that research area
are much more complicated than the simple example considéreere.

Example 7.3 (Recon gurable Robot) To solve the problem shown in Figure
7.13, the robot must change its shape. There are two possitdbapes, which
correspond directly to the modes:elongatedand compressed Examples of each
are shown in the gure. Figure 7.14 shows hoW; .. (M) appears for each of the
two modes. Suppose the robot starts initially from the left Wile in the elongated
mode and must travel to the last room on the right. This problen must be solved
by 1) recon guring the robot into the compressed mode; 2) pagg through the
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corridor into the center; 3) recon guring the robot into the elongated mode; and
4) passing through the corridor to the rightmost room. The rbot has actions
that directly change the mode by recon guring itself. To mak the problem more
interesting, we could require the robot to recon gure itsélin speci c locations
(e.g., where there is enough clearance, or possibly at a lbea where another
robot can assist it).

The examples presented so far barely scratch the surface be possible hybrid
motion planning problems that can be de ned. Many such prokims can arise, for
example, in the context making automated video game charass or digital actors.
To solve these problems, standard motion planning algoriths can be adapted if
they are given information about how to change the modes. Latons in X
from which the mode can be changed may be expressed as sulmyddlch of the
planning e ort should then be focused on attempting to changmodes, in addition
to trying to directly reach the goal. Applying sampling-basd methods requires
the de nition of a metric on X that accounts for both changes in the mode and the
con guration. A wide variety of hybrid problems can be formlated, ranging from
those that are impossible to solve in practice to those thatra straightforward
extensions of standard motion planning. In general, the hyiol motion planning
model is useful for formulating a hierarchical approach, agescribed in Section
1.4. One particularly interesting class of problems that tthis model, for which
successful algorithms have been developed, will be covenect.

7.3.2 Manipulation Planning

This section presents an overview of manipulation planningthe concepts ex-
plained here are mainly due to [7, 8]. Returning to Example Z, imagine that the
robot must carry a key that is so large that it changes the corattivity of Gee .
For the manipulation planning problem, the robot is called ananipulator, which
interacts with a part. In some con gurations it is able tograspthe part and move
it to other locations in the environment. Themanipulation task usually requires
moving the part to a speci ed location in W, without particular regard as to
how the manipulator can accomplish the task. The model considered here greatly
simpli es the problems of grasping, stability, friction, mechanics, and uncertain-
ties and instead focuses on the geometric aspects (some adsth issues will be
addressed in Section 12.5). For a thorough introduction tchese other important
aspects of manipulation planning, see [101]; see also S#i13.1.3 and 12.5.

Admissible con gurations Assume thatW, O, and A from Formulation 4.1
are used. For manipulation planning,A is called the manipulator, and let C*
refer to the manipulator con guration space Let P denote apart, which is a
rigid body modeled in terms of geometric primitives, as desdlbed in Section 3.1.
It is assumed thatP is allowed to undergo rigid-body transformations and will
therefore have its ownpart con guration space G = SE(2) or & = SE(3). Let
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P 2 CP denote apart con guration. The transformed part model is denoted as

P ().
q2C3, Chis 2C¥

‘obs

lJLjL

g2 Cy 02 Csta g2 Cya

Figure 7.15: Examples of several important subsets Gffor manipulation plan-
ning.

The combinedcon guration space C, is de ned as the Cartesian product
c=Cc cCch" (7.14)

in which each con gurationqg 2 C is of the formq = (¢?;¢P). The rst step is
to remove all con gurations that must be avoided. Parts of Fgure 7.15 show
examples of these sets. Con gurations for which the maniptbr collides with
obstacles are

Chs= f (0 F) 2C jA()\O 6= ig: (7.15)
The next logical step is to remove con gurations for which th part collides with
obstacles. It will make sense to allow the part to \touch" theobstacles. For
example, this could model a part sitting on a table. Therefar, let

Ghs = f(sf) 2C | int(P(cP) \O 6= ;g (7.16)

denote the open set for which the interior of the part intersgs O. Certainly, if
the part penetratesO, then the con guration should be avoided.
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ConsiderC n(Gys[C 5. The con gurations that remain ensure that the robot
and part do not inappropriately collide with O. Next consider the interaction
betweenA and P. The manipulator must be allowed to touch the part, but
penetration is once again not allowed. Therefore, let

Gbs = T(q5 ) 2CJA(F) \ int(P(cP)) 6 ;9: (7.17)
Removing all of these bad con gurations yields
Gaam = C N(Gs [ C 55 [ C o, (7.18)

which is called the set ofadmissible con gurations

Stable and grasped con gurations Two important subsets ofGgm are used
in the manipulation planning problem. See Figure 7.15. La®, denote the set of
stable part con gurations which are con gurations at which the part can safely
rest without any forces being applied by the manipulator. Tls means that a part
cannot, for example, oat in the air. It also cannot be in a corguration from
which it might fall. The particular stable con gurations depend on properties
such as the part geometry, friction, mass distribution, ando on. These issues
are not considered here. From this, le€ C aam be the correspondingstable
con gurations, de ned as

@ = F(0 ) 2 Caam | O 2 Cla0: (7.19)

The other important subset of G is the set of all con gurations in which the

robot is grasping the part (and is capable of carrying it, if acessary). Let
this denote the grasped con gurations denoted by G, C ,qm. For every con-
guration, (®;0P) 2 Cq, the manipulator touches the part. This means that
A(@®)\P (c?) & ; (penetration is still not allowed becaus&l;, C a4m). In gen-

eral, many con gurations at which A(¢?) contacts P (g°) will not necessarily be
in G,. The conditions for a point to lie in G, depend on the particular charac-
teristics of the manipulator, the part, and the contact surfice between them. For
example, a typical manipulator would not be able to pick up allock by making

contact with only one corner of it. This level of detail is notde ned here; see [101]
for more information about grasping.

We must always ensure that eitherx 2 Csa or x 2 Cy. Therefore, let
Gree = Gt [ Cqr, to re ect the subset of Ggm that is permissible for manip-
ulation planning.

The mode spaceM, contains two modes, which are named thegansit mode
and the transfer mode In the transit mode, the manipulator is not carrying the
part, which requires thatq 2 Cg,. In the transfer mode, the manipulator carries
the part, which requires thatq 2 Cy,. Based on these simple conditions, the only
way the mode can change is tf 2 Csia \ C 4. Therefore, the manipulator has two
available actions only when it is in these con gurations. Irall other con gurations
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the mode remains unchanged. For convenience, &t = G \C 4 denote the set
of transition con gurations, which are the places in which the mode may change.
Using the framework of Section 7.3.1, the mode spad#, and C-space(C, are
combined to yield thestate spaceX = C M. Since there are only two modes,
there are only two copies ofZ, one for each mode. State-based sed§free , Xtra
Xsta, and X g, are directly obtained fromGiee , Gra, Gia, and G, by ignoring the
mode. For example,
Xia = (q;m) 2 X ]2 Cra0: (7.20)
The setsXtree , Xsta, and Xy, are similarly de ned.
The task can now be de ned. Aninitial part con guration , ¢, 2 Csa, and
a goal part con guration, Ogoa| 2 Cya, are speci ed. Compute a path : [0;1]!
Xiree suchthat (0) = ¢f, and (1) = df,. Furthermore, theaction trajectory
[0;1]! U must be speci ed to indicate the appropriate mode changes whever
(s) 2 Xya. A solution can be considered as an alternating sequenceti@insit
pathsand transfer paths whose names follow from the mode. This is depicted in

Figure 7.16.
Z N
Transfer ﬂ
—] c
~d¢
Transit

Figure 7.16: The solution to a manipulation planning proble alternates between
the two layers of X . The transitions can only occur wherx 2 Xy .

Manipulation graph The manipulation planning problem generally can be
solved by forming a manipulation graphG, [7, 8]. Let aconnected componentf
Xya refer to any connected component df,, that is lifted into the state space by
ignoring the mode. There are two copies of the connected cooment of G;, , one
for each mode. For each connected componentXf, , a vertex exists inG,. An
edge is de ned for each transfer path or transit path that conects two connected
components ofX,. The general approach to manipulation planning then is as
follows:

1. Compute the connected components of;, to yield the vertices ofG,.

2. Compute the edges o6, by applying ordinary motion planning methods
to each pair of vertices ofG,.

3. Apply motion planning methods to connect the initial and gal states to
every possible vertex oK, that can be reached without a mode transition.
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4. SearchG, for a path that connects the initial and goal states. If one asts,
then extract the corresponding solution as a sequence ofnisat and transfer
paths (this yields , the actions that cause the required mode changes).

This can be considered as an example of hierarchical plangjras described in
Section 1.4.

Figure 7.17: This example was solved in [41] using the manigtion planning
framework and the visibility-based roadmap planner. It is &ry challenging be-
cause the same part must be regrasped in many places.

Multiple parts The manipulation planning framework nicely generalizes to
multiple parts, Py, :::, Px. Each part has its own C-space, and is formed
by taking the Cartesian product of all part C-spaces with themanipulator C-
space. The setGq4n is de ned in a similar way, but now part-part collisions also
have to be removed, in addition to part-manipulator, maniplator-obstacle, and
part-obstacle collisions. The de nition ofGy, requires that all parts be in stable
con gurations; the parts may even be allowed to stack on topf@ach other. The
de nition of G requires that one part is grasped and all other parts are stéb
There are still two modes, depending on whether the maniputa is grasping a
part. Once again, transitions occur only when the robot is i, = Gya \ C .
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Figure 7.18: This manipulation planning example was solved [127] and involves
90 movable pieces of furniture. Some of them must be dragged of the way to
solve the problem. Paths for two di erent queries are shown.

The task involves moving each part from one con guration to mother. This is
achieved once again by de ning a manipulation graph and obitsing a sequence
of transit paths (in which no parts move) and transfer pathsi which one part is
carried and all other parts are xed). Challenging manipulton problems solved
by motion planning algorithms are shown in Figures 7.17 and 18.

Other generalizations are possible. A generalization torobots would lead to
2 modes, in which each mode indicates whether each robot is gping the part.
Multiple robots could even grasp the same object. Another geralization could
allow a single robot to grasp more than one object.

7.4 Planning for Closed Kinematic Chains

This section continues where Section 4.4 left 0. The subspa of C that results
from maintaining kinematic closure was de ned and illustreed through some ex-
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amples. Planning in this context requires that paths remaion a lower dimensional
variety for which a parameterization is not available. Manyimportant applica-
tions require motion planning while maintaining these comsints. For example,
consider a manipulation problem that involves multiple maipulators grasping
the same object, which forms a closed loop as shown in Figurdd. A loop
exists because both manipulators are attached to the groundhich may itself
be considered as a link. The development of virtual actorsrfonovies and video
games also involves related manipulation problems. Loopks@ arise in this con-
text when more than one human limb is touching a xed surfacee(g., two feet on
the ground). A class of robots callegarallel manipulatorsare intentionally de-
signed with internal closed loops [103]. For example, coder the Stewart-Gough
platform [67, 126] illustrated in Figure 7.20. The lengthsfoeach of the six arms,
A1, 11, Ag, can be independently varied while they remain attached vispherical
joints to the ground and to the platform, which is A;. Each arm can actually be
imagined as two links that are connected by a prismatic jointDue to the total
of 6 degrees of freedom introduced by the variable lengthdjet platform actu-
ally achieves the full 6 degrees of freedom (hence, somedirensional region in
SE(3) is obtained for A7). Planning the motion of the Stewart-Gough platform,
or robots that are based on the platform (the robot shown in gure 7.27 uses a
stack of several of these mechanisms), requires handlingmpalosure constraints
that must be maintained simultaneously. Another applicatia is computational
biology, in which the C-space of molecules is searched, mafywhich are derived
from molecules that have closed, exible chains of bonds [42

7.4.1 Adaptation of Motion Planning Algorithms

All of the components from the general motion planning probfe of Formulation
4.1 are included:W, O, Ay, :::, Am, C g, and gs. It is assumed that the robot
is a collection ofr links that are possibly attached in loops.

It is assumed in this section thatC= R". If this is not satisfactory, there are
two ways to overcome the assumption. The rst is to represer80(2) and SO(3)
asS' and S?, respectively, and include the circle or sphere equation part of the
constraints considered here. This avoids the topology pri@ms. The other option
is to abandon the restriction of usingR" and instead use a parameterization o
that is of the appropriate dimension. To perform calculus osuch manifolds, a
smooth structureis required, which is introduced in Section 8.3.2. In the psenta-
tion here, however, vector calculus oR" is su cient, which intentionally avoids
these extra technicalities.

Closure constraints The closure constraints introduced in Section 4.4 can be
summarized as follows. There is a seR, of polynomialsfq, :::, fx that belong
to Q[a;:::; ] and express the constraints for particular points on thenks of
the robot. The determination of these is detailed in Sectio#.4.3. As mentioned
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Figure 7.19: Two or more manipulators manipulating the samebject causes
closed kinematic chains. Each black disc corresponds to ackite joint.

previously, polynomials that force points to lie on a circl®r sphere in the case of
rotations may also be included irP.
Let n denote the dimension ofZ. The closure spacds de ned as

Go="1q2Cj8fi 2P;fi(q;:::;0)=0g; (7.21)

which is an m-dimensional subspace of that corresponds to all con gurations
that satisfy the closure constants. The obstacle set mustsa be taken into ac-
count. Once again,Gys and Gee are de ned using (4.34). Thefeasible spacés
de ned as Gea = Gio \ Cree ,» Which are the con gurations that satisfy closure
constraints and avoid collisions.

The motion planning problemisto nd a path :[0;1]! C tes suchthat (0) =
g and (1) = gs. The new challenge is that there is no explicit parameterizan
of Gea, Which is further complicated by the fact thatm < n (recall that m is the
dimension ofCy,).

Combinatorial methods Since the constraints are expressed with polynomi-
als, it may not be surprising that the computational algebrec geometry methods
of Section 6.4 can solve the general motion planning problemith closed kinematic
chains. Either cylindrical algebraic decomposition or Caty's roadmap algorithm
may be applied. As mentioned in Section 6.5.3, an adaptatiorf the roadmap
algorithm that is optimized for problems in whichm < n is given in [18].
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Figure 7.20: An illustration of the Stewart-Gough platform @dapted from a gure
made by Frank Saottile).

Sampling-based methods  Most of the methods of Chapter 5 are not easy to
adapt because they require sampling iGe,, for which a parameterization does
not exist. If points in a bounded region oR" are chosen at random, the proba-
bility is zero that a point on Ge, will be obtained. Some incremental sampling
and searching methods can, however, be adapted by the comstion of a local
planning method (LPM) that is suited for problems with closue constraints. The
sampling-based roadmap methods require many samples to engrated directly
on Gea. Section 7.4.2 presents some techniques that can be used é&mayate
such samples for certain classes of problems, enabling tlevelopment of e cient
sampling-based planners and also improving the e ciency ahcremental search
planners. Before covering these techniques, we rst presenmethod that leads
to a more general sampling-based planner and is easier to ieypent. However, if
designed well, planners based on the techniques of SectiohZ are more e cient.
Now consider adapting the RDT of Section 5.5 to work for probies with
closure constraints. Similar adaptations may be possiblerfother incremental
sampling and searching methods covered in Section 5.4, sashthe randomized
potential eld planner. A dense sampling sequence, is generated over a bounded
n-dimensional subset oR", such as a rectangle or sphere, as shown in Figure 7.21.
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Figure 7.21: For the RDT, the samples can be drawn from a region R", the
space in whichC,, is embedded.

The samples are not actually required to lie o, because they do not necessarily
become part of the topological graphG. They mainly serve to pull the search
tree in di erent directions. One concern in choosing the bawding region is that it
must include G, (at least the connected component that includeg ) but it must
not be unnecessarily large. Such bounds are obtained by aymihg the motion
limits for a particular linkage.

Stepping along Gy, The RDT algorithm given Figure 5.21 can be applied
directly; however, the stopping-configuration function in line 4 must be
changed to account for both obstacles and the constraintsahde ne G,,. Figure
7.22 shows one general approach that is based mmmerical continuation [9]. An
alternative is to use inverse kinematics, which is part of #h approach described
in Section 7.4.2. The nearest RDT vertexq 2 C, to the sample (i) is rst com-
puted. Letv = (i) @, which indicates the direction in which an edge would
be made fromq if there were no constraints. A local motion is then computed
by projecting v into the tangent plane€® of Gy, at the point g. SinceCy, is gen-
erally nonlinear, the local motion produces a point that is ot precisely onGCyg.
Some numerical tolerance is generally accepted, and a snealbugh step is taken
to ensure that the tolerance is maintained. The process ities by computing
v with respect to the new point and moving in the direction ofv projected into
the new tangent plane. If the error threshold is surpassedhén motions must
be executed in the normal direction to return toGy,. This process of executing
tangent and normal motions terminates when progress can nonger be made,
due either to the alignment of the tangent plane (nearly pemndicular to v) or
to an obstacle. This nally yields gs, the stopping con guration. The new path
followed in Gea is no longer a \straight line" as was possible for some prolotes in
Section 5.5; therefore, the approximate methods in Sectidn5.2 should be used

3Tangent planes are de ned rigorously in Section 8.3.
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Figure 7.22: For each sample (i) the nearest point, ¢, 2 C, is found, and then
the local planner generates a motion that lies in the local tent plane. The
motion is the project of the vector fromq, to (i) onto the tangent plane.

to create intermediate vertices along the path.

In each iteration, the tangent plane computation is comput at someq 2 Cgo
as follows. The di erential con guration vector dq lies in the tangent space of a
constraint f;(q) = 0 if

@f(q) @f(q) . @9
@9 @] @q

This leads to the following homogeneous system for all of ttkepolynomials in P
that de ne the closure constraints

dg + dog + dg, =0: (7.22)

@9 @i @i’
@q @9 @q 0 1
dg
@) @5 @KL Bdps
@q @9 @q % § = 0:; (7.23)

@@ @) @%(q)
@q @4y @q

If the rank of the matrix is m  n, then m con guration displacements can be
chosen independently, and the remaining m parameters must satisfy (7.23).
This can be solved using linear algebra techniques, such agslar value decom-
position (SVD) [66, 131], to compute an orthonormal basis fadhe tangent space
at g. Let ey, :::, ey, denote thesen-dimensional basis vectors. The components
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of the motion direction are obtained fronv = (i) ¢,. First, construct the inner

products,a; = v e,a =V &, ::;,an =V €y,. Using these, the projection of/
in the tangent plane is then-dimensional vectorw given by
X
w = ae; (7.24)

I
which is used as the direction of motion. The magnitude mustebappropriately
scaled to take su ciently small steps. SinceCGy, is generally curved, a linear
motion leavesC,,. A motion in the inward normal direction is then required to
move back ontoGyo.

Since the dimensiorm of G, is less thann, the procedure just described can
only produce numerical approximations to paths irG,,. This problem also arises
in implicit curve tracing in graphics and geometric modelig [77]. Therefore, each
constraint fi(a;:::; ¢h) = 0 is actually slightly weakened tojf(qu;:::;a)j < for
some xed tolerance > 0. This essentially \thickens" G, so that its dimension
is n. As an alternative to computing the tangent plane, motion diections can
be sampled directly inside of this thickened region withoutomputing tangent
planes. This results in an easier implementation, but it iseks e cient [136].

7.4.2 Active-Passive Link Decompositions

An alternative sampling-based approach is to perform aactive-passive decom-
position, which is used to generate samples G, by directly sampling active

variables, and computing the closure values fguassivevariables using inverse
kinematics methods. This method was introduced in [72] andigsequently im-

proved through the development of theandom loop generatorin [41, 43]. The

method serves as a general framework that can adapt virtualany of the meth-

ods of Chapter 5 to handle closed kinematic chains, and expmeental evidence
suggests that the performance is better than the method of G®n 7.4.1. One
drawback is that the method requires some careful analysi$ the linkage to de-

termine the best decomposition and also bounds on its molyli Such analysis
exists for very general classes of linkages [41].

Active and passive variables In this section, let C denote the C-space ob-
tained from all joint variables, instead of requiringC = R", as in Section 7.4.1.
This means thatP includes only polynomials that encode closure constraintas
opposed to allowing constraints that represent rotations.Using the tree repre-
sentation from Section 4.4.3, this means tha€ is of dimensionn, arising from
assigning one variable for each revolute joint of the linkagin the absence of any
constraints. Letq 2 C denote this vector of con guration variables. Theactive-
passive decompositiopartitions the variables ofq to form two vectors, ¢, called
the active variablesand ¢P, called the passive variables The values of passive
variables are always determined from the active variabley enforcing the closure
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constraints and using inverse kinematics techniques. rif is the dimension ofC,,
then there are alwaysm active variables andn m passive variables.

Figure 7.23: A chain of links in the plane. There are seven ka and seven joints,
which are constrained to form a loop. The dimension of is seven, but the
dimension ofC, is four.

Temporarily, suppose that the linkage forms a single loop ahown in Figure
7.23. One possible decomposition into activ@ and passivey® variables is given in
Figure 7.24. If constrained to form a loop, the linkage hastdodegrees of freedom,
assuming the bottom link is rigidly attached to the ground. his means that values
can be chosen for four active joint angleg® and the remaining threeg® can be
derived from solving the inverse kinematics. To determing®, there are three
equations and three unknowns. Unfortunately, these equatis are nonlinear and
fairly complicated. Nevertheless, e cient solutions exisfor this case, and the 3D
generalization [100]. For a 3D loop formed of revolute joist there are six passive
variables. The number, 3, of passive links iR? and the number 6 forR® arise
from the dimensions ofSE(2) and SE(3), respectively. This is the freedom that
is stripped away from the system by enforcing the closure catmaints. Methods
for e ciently computing inverse kinematics in two and threedimensions are given
in [12]. These can also be applied to the RDT stepping method Bection 7.4.1,
instead of using continuation.

If the maximal number of passive variables is used, there i$ most a nite
number of solutions to the inverse kinematics problem; thisnplies that there are
often several choices for the passive variable values. Itutd be the case that
for some assignments of active variables, there are no sa@ut to the inverse
kinematics. An example is depicted in Figure 7.25. Supposeathwe want to
generate samples i, by selecting random values fog? and then using inverse
kinematics forgP. What is the probability that a solution to the inverse kinenatics
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Figure 7.24: Three of the joint variables can be determinedutomatically by
inverse kinematics. Therefore, four of the joints be desigted asactive, and the
remaining three will be passive.

exists? For the example shown, it appears that solutions wiolinot exist in most
trials.

Loop generator The random loop generatorgreatly improves the chance of
obtaining closure by iteratively restricting the range on ach of the active variables.
The method requires that the active variables appear sequélly along the chain
(i.e., there is no interleaving of active and passive variés). Them coordinates of
(F are obtained sequentially as follows. First, compute an ietval, | , of allowable
values forgg. The interval serves as a loose bound in the sense that, folyaralue
of 624, it is known for certain that closure cannot be obtained. T is ensured
by performing a careful geometric analysis of the linkage hich will be explained
shortly. The next step is to generate a sample icf 2 1,, which is accomplished
in [41] by picking a random point inl;. Using the valuecf, a bounding interval
I, is computed for allowable values off. The value ¢§ is obtained by sampling
in I,. This process continues iteratively untill, and ¢g, are obtained, unless it
terminates early because somlg = ; for i <m . If successful termination occurs,
then the active variables¢? are used to nd valuesq® for the passive variables.
This step still might fail, but the probability of success isnow much higher. The
method can also be applied to linkages in which there are migte, common loops,
as in the Stewart-Gough platform, by breaking the linkage o a tree and closing
loops one at a time using the loop generator. The performandepends on how
the linkage is decomposed [41].
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Figure 7.25: In this case, the active variables are chosenanway that makes it
impossible to assign passive variables that close the loop.

Computing bounds on joint angles The main requirement for successful
application of the method is the ability to compute bounds orhow far a chain
of links can travel in W over some range of joint variables. For example, for a
planar chain that has revolute joints with no limits, the chan can sweep out a
circle as shown in Figure 7.26a. Suppose it is known that thegle between links
must remain between =6 and =6. A tighter bounding region can be obtained,
as shown in Figure 7.26b. Three-dimensional versions of sgebounds, along
with many necessary details, are included in [41]. These buls are then used to
computel; in each iteration of the sampling algorithm.

Now that there is an e cient method that generates samples dectly in G,
it is straightforward to adapt any of the sampling-based planing methods of
Chapter 5. In [41] many impressive results are obtained fohallenging problems
that have the dimension ofC up to 97 and the dimension oiC,, up to 25; see
Figure 7.27. These methods are based on applying the new séingptechniques
to the RDTs of Section 5.5 and the visibility sampling-basedoadmap of Section
5.6.2. For these algorithms, the local planning method is pped to the active
variables, and inverse kinematics algorithms are used fohe passive variables
in the path validation step. This means that inverse kinemats and collision
checking are performed together, instead of only collisiahecking, as described
in Section 5.3.4.

One important issue that has been neglected in this sectios the existence of
kinematic singularities which cause the dimension df, to drop in the vicinity of
certain points. The methods presented here have assumedttealving the motion
planning problem does not require passing through a singulst. This assump-
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Figure 7.26: (a) If any joint angle is possible, then the lirk sweep out a circle in
the limit. (b) If there are limits on the joint angles, then a tighter bound can be
obtained for the reachability of the linkage.

tion is reasonable for robot systems that have many extra degpes of freedom,
but it is important to understand that completeness is lostm general because
the sampling-based methods do not explicitly handle thesesgeneracies. In a
sense, they occur below the level of sampling resolution.rfFaore information on
kinematic singularities and related issues, see [103].

7.5 Folding Problems in Robotics and Biology

A growing number of motion planning applications involve soe form of folding.

Examples include automated carton folding, computer-aidiedrug design, protein

folding, modular recon gurable robots, and even robotic @gami. These problems
are generally modeled as a linkage in which all bodies are nented by revolute

joints. In robotics, self-collision between pairs of bodseusually must be avoided.
In biological applications, energy functions replace olmstles. Instead of crisp
obstacle boundaries, energy functions can be imagined asft$ obstacles, in which

areal value is de ned for everyg 2 C, instead of de ning a setC,,s C . For a given

threshold value, such energy functions can be converted anain obstacle region
by de ning Gps to be the con gurations that have energy above the threshold
However, the energy function contains more information bease such thresholds
are arbitrary. This section brie y shows some examples ofltbng problems and

techniques from the recent motion planning literature.

Carton folding An interesting application of motion planning to the automagd
folding of boxes is presented in [98]. Figure 7.28 shows atoarin its original
at form and in its folded form. As shown in Figure 7.29, the prblem can be
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Figure 7.27: Planning for the Logabex LX4 robot [31]. This sotion was com-
puted in less than a minute by applying active-passive decqusition to an RDT-

based planner [41]. In this example, the dimension Gfis 97 and the dimension
of G is 25.

modeled as a tree of bodies connected by revolute joints. @nthis model has
been formulated, many methods from Chapters 5 and 6 can be g@ted for this
problem. In [98], a planning algorithm optimized particulaly for box folding
is presented. It is an adaptation of an approximate cell deogposition algorithm
developed for kinematic chains in [97]. Its complexity is @onential in the degrees
of freedom of the carton, but it gives good performance on mtical examples.
One such solution that was found by motion planning is showm iFigure 7.30. To
use these solutions in a factory, the manipulation problemals to be additionally
considered. For example, as demonstrated in [98], a manigtdr arm robot can be
used in combination with a well-designed set of xtures. Thextures help hold

folding

Carton Blank Carton Ready For Loading

Figure 7.28: An important packaging problem is to automate tb folding of a
perforated sheet of cardboard into a carton.
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Figure 7.29: The carton can be cleverly modeled as a tree ofdies that are
attached by revolute joints.

Z il
/_/9‘2___/ 95 (;;_;) /Z““//

o
Carton Blank

(63)

(8;)

Figure 7.30: A folding sequence that was computed using thigarithm in [98].
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the carton in place while the manipulator applies pressureithe right places,
which yields the required folds. Since the feasibility withxtures depends on
the particular folding path, the planning algorithm generges all possible distinct
paths from the initial con guration (at which the box is completely unfolded).

Simplifying knots A knot is a closed curve that does not intersect itself, is
embedded inR3, and cannot be untangled to produce a simple loop (such as a
circular path). If the knot is allowed to intersect itself, then any knot can be
untangled; therefore, a careful de nition of what it means @ untangle a knot is
needed. For a closed curve, : [0;1]! R3, embedded inR3 (it cannot intersect
itself), let the set R®n ([0; 1]) of points not reached by the curve be called the
ambient spaceof . In knot theory, an ambient isotopybetween two closed curves,
1 and ,, embedded inR® is a homeomorphism between their ambient spaces.
Intuitively, this means that ; can be warped into , without allowing any self-
intersections. Therefore, determining whether two loopsra equivalent seems
closely related to motion planning. Such equivalence giveise to groups that
characterize the space of knots and are closely related toetfundamental group
described in Section 4.1.3. For more information on knot tloey, see [4, 75, 83].

A motion planning approach was developed in [89] to determénwhether a
closed curve is equivalent to thaunknot, which is completely untangled. This
can be expressed as a curve that maps o, embedded inR3. The algorithm
takes as input a knot expressed as a circular chain of line segnts embedded in
R3. In this case, the unknot can be expressed as a triangle R¥. One of the
most challenging examples solved by the planner is shown iigkre 7.31. The
planner is sampling-based and shares many similarities tithe RDT algorithm
of Section 5.5 and the Ariadne's clew and expansive space plars described in
Section 5.4.4. Since the task is not to produce a collisioreé path, there are
several unique aspects in comparison to motion planning. Amergy function is
de ned over the collection of segments to try to guide the seeh toward simpler
con gurations. There are two kinds of local operations thatare made by the
planner: 1) Try to move a vertex toward a selected subgoal ifné ambient space.
This is obtained by using random sampling to grow a search &e 2) Try to delete
a vertex, and connect the neighboring vertices by a straighine. If no collision
occurs along the intermediate con gurations, then the knohas been simpli ed.
The algorithm terminates when it is unable to further simpliy the knot.

Drug design A sampling-based motion planning approach to pharmaceutt
drug design is taken in [92]. The development of a drug is a lpnincremental
process, typically requiring years of research and expeentation. The goal is
to nd a relatively small molecule called aligand, typically comprising a few
dozen atoms, that docks with a receptor cavity in a specic mtein [94]; Figure
1.14 (Section 1.2) illustrated this. Examples of drug moletes were also given
in Figure 1.14. Protein-ligand docking can stimulate or inibit some biological
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Figure 7.31: The planner in [89] untangles the famous Ochianknot benchmark
in a few minutes on a standard PC.

activity, ultimately leading to the desired pharmacologiel e ect. The problem
of nding suitable ligands is complicated due to both energgonsiderations and
the exibility of the ligand. In addition to satisfying stru ctural considerations,
factors such as synthetic accessibility, drug pharmacolp@nd toxicology greatly
complicate and lengthen the search for the most e ective dgumolecules.

One popular model used by chemists in the context of drug dgsiis aphar-
macophore which serves as a template for the desired ligand [40, 52, 621]. The
pharmacophore is expressed as a seffedituresthat an e ective ligand should pos-

sess and a set adpatial constraintsamong the features. Examples of features are

speci ¢ atoms, centers of benzene rings, positive or negegticharges, hydrophobic
or hydrophilic centers, and hydrogen bond donors or accepso Features gener-
ally require that parts of the molecule must remain xed inR3, which induces
kinematic closure constraints. These features are devetmpby chemists to en-
capsulate the assumption that ligand binding is due primaly to the interaction
of some features of the ligand to \complementary" featuresf éhe receptor. The
interacting features are included in the pharmacophore, wdh is a template for
screening candidate drugs, and the rest of the ligand atomsenely provide a scaf-
fold for holding the pharmacophore features in their spatigositions. Figure 7.32
illustrates the pharmacophore concept.
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(X2 Y2; 22)

(X1;¥1;21)
(X3;Y3; Z3)

(0;0;0)

Figure 7.32: A pharmacophore is a model used by chemists tongiify the in-

teraction process between a ligand (candidate drug moleeyland a protein. It

often amounts to holding certain features of the molecule ed in R%. In this

example, the positions of three atoms must be xed relativeotthe body frame
of an arbitrarily designated root atom. It is assumed that tlese features interact
with some complementary features in the cavity of the protai

Candidate drug molecules (ligands), such as the ones shownFigure 1.14,
can be modeled as a tree of bodies as shown in Figure 7.33. Stmeds can
rotate, yielding revolute joints in the model; other bonds mst remain xed. The
drug design problem amounts to searching the space of conrgtions (called
conformationg) to try to nd a low-energy con guration that also places cetain
atoms in specied locations inR3. This additional constraint arises from the
pharmacophore and causes the planning to occur @, from Section 7.4 because
the pharmacophores can be expressed as closure constraints

An energy function serves a purpose similar to that of a colit detector. The
evaluation of a ligand for drug design requires determininghether it can achieve
low-energy conformations that satisfy the pharmacophoreonstraints. Thus, the
task is di erent from standard motion planning in that there is no predetermined
goal con guration. One of the greatest di culties is that the energy functions are
extremely complicated, nonlinear, and empirical. Here is pjcal example (used
in [92]):

P P
e(q): bonds%Kb(R R%Z + ang %Ka( %2"'

torsions Kq[1 + cos(p Cb] +

(7.25)

12 6
P 4 L EUR 1
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Root Atom

Figure 7.33: The modeling of a exible molecule is similar tthat of a robot. One
atom is designated as the root, and the remaining bodies areanged in a tree.
If there are cyclic chains in the molecules, then constramias described in Section
4.4 must be enforced. Typically, only some bonds are capablerotation, whereas
others must remain rigid.

The energy accounts for torsion-angle deformations, vanrdé/aals potential, and
Coulomb potentials. In (7.25), the rst sum is taken over allbonds, the second
over all bond angles, the third over all rotatable bonds, andhe last is taken
over all pairs of atoms. The variables are the force constantk; K,, and Kg;
the dielectric constant, ; a periodicity constant, p; the Lennard-Jones radii, j; ;
well depth, j; partial charge, ¢; measured bond lengthR; equilibrium bond
length, R% measured bond angle, ; equilibrium bond angle, % measured tor-
sional angle, ; equilibrium torsional angle, % and distance between atom centers,
rij . Although the energy expression is very complicated, it onlgepends on the
con guration variables; all others are constants that are gimated in advance.

Protein folding In computational biology, the problem of protein folding shres
many similarities with drug design in that the molecules haw rotatable bonds and
energy functions are used to express good con gurations. &lproblems are much
more complicated, however, because the protein moleculag generally much
larger than drug molecules. Instead of a dozen degrees otftem, which is typi-
cal for a drug molecule, proteins have hundreds or thousanalsdegrees of freedom.
When proteins appear in nature, they are usually in a foldedpw-energy con g-
uration. The structure probleminvolves determining precisely how the protein is
folded so that its biological activity can be completely undrstood. In some stud-
ies, biologists are even interested in the pathway that a ptein takes to arrive in
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its folded state [10, 11]. This leads directly to an extengioof motion planning
that involves arriving at a goal state in which the moleculesi folded. In [10, 11],
sampling-based planning algorithms were applied to compatfolding pathways
for proteins. The protein starts in an unfolded con guration and must arrive in a
speci ed folded con guration without violating energy corstraints along the way.
Figure 7.34 shows an example from [11]. That work also drawgeresting con-
nections between protein folding and box folding, which wasovered previously.

Figure 7.34: Protein folding for a polypeptide, computed by sampling-based
roadmap planning algorithm [10]

7.6 Coverage Planning

Imagine automating the motion of a lawnmower for an estate #t has many obsta-
cles, such as a house, trees, garage, and a complicated prigpgeoundary. What
are the best zig-zag motions for the lawnmower? Can the amdusf redundant
traversals be minimized? Can the number of times the lawnmewneeds to be
stopped and rotated be minimized? This is one example obverage planning
which is motivated by applications such as lawn mowing, autoated farming,
painting, vacuum cleaning, and mine sweeping. A survey ofitharea appears in
[37]. Even for a region il = R2, nding an optimal-length solution to coverage
planning is NP-hard, by reduction to the closely related Tragling Salesman Prob-
lem [15, 106]. Therefore, we are willing to tolerate appraxiate or even heuristic
solutions to the general coverage problem, even RY.

Boustrophedon decomposition One approach to the coverage problem is to
decomposeG,ee into cells and perform boustrophedon (from the Greek \ox tur-
ing") motions in each cell as shown in Figure 7.35 [38]. It issaumed that the
robot is a point in W = R?2, but it carries a tool of thickness that hangs evenly
over the sides of the robot. This enables it to paint or mow panf G up to
distance =2 from either side of the robot as it moves forward. Such motis are
often used in printers to reduce the number of carriage retus.
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() (b)

Figure 7.36: (a) Only the rst case from Figure 6.2 is neededextend upward
and downward. All other cases are neglected. (b) The resul§rdecomposition
is shown, which has fewer cells than that of the vertical desgosition in Figure
6.3.

If Gos is polygonal, a reasonable decomposition can be obtained dyapting
the vertical decomposition method of Section 6.2.2. In thaalgorithm, critical
events were de ned for several cases, some of which are né¢vant for the bous-
trophedon motions. The only events that need to be handled eishown in Figure
7.36a [36]. This produces a decomposition that has fewerlsehs shown in Fig-
ure 7.36b. Even though the cells are nonconvex, they can algabe sliced nicely
into vertical strips, which makes them suitable for boustrphedon motions. The
original vertical decomposition could also be used, but thextra cell boundaries
would cause unnecessary repositioning of the robot. A sianil method, which
furthermore optimizes the number of robot turns, is preseet in [79].

Spanning tree covering
by Gabriely and Rimon; it places a tiling of squares inside @, and computes
the spanning tree of the resulting connectivity graph [58,9. Suppose again that
Gree is polygonal. Consider the example shown in Figure 7.37a. &hrst step is

An interesting approximate method was developed
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@)

(c) (d)

Figure 7.37: (a) An example used for spanning tree coveringd)(The rst step is
to tile the interior with squares. (c) The spanning tree of asadmap formed from
grid adjacencies. (d) The resulting coverage path.
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Figure 7.38: A circular path is made by doubling the resolutin and following the
perimeter of the spanning tree.

to tile the interior of G With squares, as shown in Figure 7.37b. Each square
should be of width , for some constant > 0. Next, construct a roadmapG
by placing a vertex in the center of each square and by de ningn edge that
connects the centers of each pair of adjacent cubes. The nsi&p is to compute

a spanning treeof G. This is a connected subgraph that has no cycles and touches
every vertex ofG; it can be computed inO(n) time, if Ghasn edges [102]. There
are many possible spanning trees, and a criterion can be ded and optimized
to induce preferences. One possible spanning tree is shovigure 7.37c.

Once the spanning tree is made, the robot path is obtained byasting at a
point near the spanning tree and following along its perimet. This path can be
precisely specied as shown in Figure 7.38. Double the restbn of the tiling,
and form the corresponding roadmap. Part of the roadmap casponds to the
spanning tree, but also included is a loop path that surrourgdthe spanning tree.
This path visits the centers of the new squares. The resultirpath for the example
of Figure 7.37ais shown in Figure 7.37d. In general, the meith yields an optimal
route, once the approximation is given. A bound on the uncoxed area due to
approximation is given in [58]. Versions of the method that @ not require an
initial map are also given in [58, 59]; this involves reasarg about information
spaces, which are covered in Chapter 11.

7.7 Optimal Motion Planning

This section can be considered transitional in many ways. €hmain concern so far
with motion planning has beenfeasibility as opposed tooptimality. This placed

the focus on nding any solution, rather than further requiring that a solution be

optimal. In later parts of the book, especially as uncertaty is introduced, opti-

mality will receive more attention. Even the most basic form of decision theory
(the topic of Chapter 9) center on making optimal choices. Ténrequirement of
optimality in very general settings usually requires an exustive search over the
state space, which amounts to computing continuous cost-tto functions. Once
such functions are known, a feedback plan is obtained, whighmuch more power-
ful than having only a path. Thus, optimality also appears fequently in the design
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Figure 7.39: For a polyhedral environment, the shortest pas do not have to
cross vertices. Therefore, the shortest-path roadmap metti from Section 6.2.4
does not extend to three dimensions.

of feedback plans because it sometimes comes at no additioz@st. This will be-

come clearer in Chapter 8. The quest for optimal solutionssd raises interesting
issues about how to approximate a continuous problem as a ciste problem.

The interplay between time discretization and space disdization becomes very
important in relating continuous and discrete planning prblems.

7.7.1 Optimality for One Robot

Euclidean shortest paths One of the most straightforward notions of opti-
mality is the Euclidean shortest path inR? or R3. Suppose thatA is a rigid body
that translates only in either W = R? or W = RS, which contains an obstacle
regionO W . Recall that, ordinarily, G IS an open set, which means that any
path, :[0;1]! C e, can be shortened. Therefore, shortest paths for motion
planning must be de ned on the closure c{f.e ), which allows the robot to make
contact with the obstacles; however, their interiors must ot intersect.

For the case in whichG,s is a polygonal region, the shortest-path roadmap
method of Section 6.2.4 has already been given. This can bengidered as a
kind of multiple-query approach because the roadmap comdy captures the
structure needed to construct the shortest path for any qugr It is possible to
make a single-query algorithm using theontinuous Dijkstra paradigm[73, 105].
This method propagates awavefront from g and keeps track of critical events
in maintaining the wavefront. As events occur, the wavefronbecomes composed
of wavelets which are arcs of circles centered on obstacle vertices. erhossible
events that can occur are 1) a wavelet disappears, 2) a wavetellides with an
obstacle vertex, 3) a wavelet collides with another wavelebdr 4) a wavelet collides
with a point in the interior of an obstacle edge. The method cabe made to run
in time O(nlgn) and usesO(nlgn) space. A roadmap is constructed that uses
O(n) space. See Section 8.4.3 for a related method.

Such elegant methods leave the impression that nding shast paths is not
very di cult, but unfortunately they do not generalize nicely to R® and a polyhe-
dral Gps. Figure 7.39 shows a simple example in which the shortest padoes not
have to cross a vertex of5ps. It may cross anywhere in the interior of an edge;
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therefore, it is not clear where to draw the bitangent lineshat would form the

shortest-path roadmap. The lower bounds for this problem aralso discouraging.
It was shown in [28] that the 3D shortest-path problem in a pghedral environ-

ment is NP-hard. Most of the di culty arises because of the preision required to
represent 3D shortest paths. Therefore, e cient polynomiktime approximation

algorithms exist [35, 110].

General optimality criteria It is di cult to even de ne optimality for more
general C-spaces. What does it mean to have a shortest pathSik(2) or SE(3)?
Consider the case of a planar, rigid robot that can translateand rotate. One
path could minimize the amount of rotation whereas anotherries to minimize
the amount of translation. Without more information, thereis no clear preference.
Ulam's distance is one possibility, which is to minimize theigtance traveled by
k xed points [80]. In Chapter 13, di erential models will be ntroduced, which
lead to meaningful de nitions of optimality. For example, he shortest paths for a
slow-moving car are shown in Section 15.3; these require &gise speci cation of
the constraints on the motion of the car (it is more costly to rave a car sideways
than forward).

This section formulates some optimal motion planning probms, to provide
a smooth transition into the later concepts. Up until now, adbns were used in
Chapter 2 for discrete planning problems, but they were suessfully avoided for
basic motion planning by directly describing paths that mapnto Ge. . It will be
convenient to use them once again. Recall that they were camient for de ning
costs and optimal planning in Section 2.3.

To avoid for now the complications of di erential equations consider making
an approximate model of motion planning in which every path ost be composed
of a sequence of shortest-path segments Ghe . Most often these are line seg-
ments; however, for the case &8O(3), circular arcs obtained by spherical linear
interpolation may be preferable. Consider extending Forntation 2.3 from Section
2.3.2 to the problem of motion planning.

Let the C-spaceCbe embedded iR™ (i.e., C R™). An action will be de ned
shortly as anm-dimensional vector. Given a scaling constantand a con guration
g, an action u produces a new con gurationo®= g+ u. This can be considered
as acon guration transition equation, ¢°= f (g; u). The path segment represented
by the action u is the shortest path (usually a line segment) betweeg and o
Following Section 2.3, let x denote aK -step plan which is a sequenceug, u,,
115, Uk ) of K actions. Note thatif ¢ and g are given, then a sequence of states,
O, G, :::, Ok+1, can be derived using . Initially, o = g, and each following
state is obtained byg.: = f (g ux). From this a path, :[0;1]! C , can be
derived.

An approximate optimal planning problem is formalized as fws:

Formulation 7.4 (Approximate Optimal Motion Planning)
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=

. The following components are de ned the same as in Formtilan 4.1: W, O,
A, C Gps, Gree, and g . It is assumed thatCis an n-dimensional manifold.

2. For eachq 2 C, a possibly in nite action space U(g). Eachu 2 U is an
n-dimensional vector.

3. A positive constant > O called thestep size

4. A set of stages each denoted byk, which begins atk = 1 and continues
inde nitely. Each stage is indicated by a subscript, to obta ¢ and uy.

5. A con guration transition function f (q;u) = g+ u in which g+ u is com-
puted by vector addition onR™.

6. Instead of a goal state, a goal regioX g is de ned.

7. Let L denote a real-valued cost functional, which is applied to K -step
plan, . This means that the sequenceug;:::;ux) of actions and the

Let F = K + 1. The cost functionalis

LCk)= Hagu) + le(ok): (7.26)

k=1

The nal term Iz (¢ ) is outside of the sum and is dened as$:(¢r) = 0
if g 2 Xg and Ig(g) = 1 otherwise. As in Formulation 2.3,K is not
necessarily a constant.

8. Each U(q) contains the specialtermination action ur, which behaves the
same way as in Formulation 2.3. Il is applied to ¢k at stagek, then the
action is repeatedly applied forever, the con guration remins in ¢ forever,
and no more cost accumulates.

The task is to compute a sequence of actions that optimizes.Z8). Formu-
lation 7.4 can be used to de ne a variety of optimal planning blems. The
parameter can be considered as the resolution of the approximation. many
formulations it can be interpreted as d&ime steg = t; however, note that no
explicit time reference is necessary because the problentyaequires constructing
a path through Gee . As approaches zero, the formulation approaches an exact
optimal planning problem. To properly express the exact ptdem, di erential
equations are needed. This is deferred until Part IV.

Example 7.4 (Manhattan Motion Model) Suppose that in addition tour,
the action setU(q) contains 2h vectors in which only one component is nonzero
and must take the value 1 or 1. For example, ifC= R?, then

U(g) = f(3;0); ( 1,0);(0; 1);(0;1);urg: (7.27)
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Figure 7.40: Under the Manhattan [ ;) motion model, all monotonic paths that
follow the grid directions have equivalent length.

- K &

Independent
Joint

Manhattan Euclidean

Figure 7.41: Depictions of the action setd/J(q), for Examples 7.4, 7.5, and 7.6.

When used in the con guration transition equation, this setof actions produces
\up," \down," \left," and \right" motions and a \terminate" command. This pro-
duces a topological graph according to the 1-neighborhoododel, (5.37), which
was given in Section 5.4.2. The action set for this example érhe following
two examples are shown in Figure 7.41 for comparison. The téem I(g; uy) is
dened to be 1 for all g 2 Ciree and ui. If g 2 Cyps, then I(gc;ux) = 1 . Note
that the set of con gurations reachable by these actions keon a grid, in which
the spacing between 1-neighbors is This corresponds to a convenient special
case in which time discretization (implemented by) leads to a regular space dis-
cretization. Consider Figure 7.40. It is impossible to take shorter path along
a diagonal because the actions do not allow it. Therefore,l ahonotonic paths
along the grid produce the same costs.

Optimal paths can be obtained by simply applying the dynamiprogramming
algorithms of Chapter 2. This example provides a nice uni ¢&on of concepts from
Section 2.2, which introduced grid search, and Section 224which explained how
to adapt search methods to motion planning. In the current s$éng, only algo-
rithms that produce optimal solutions on the correspondingraph are acceptable.

This form of optimization might not seem relevant because does not represent
the Euclidean shortest-path problem folR?. The next model adds more actions,
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and does correspond to an important class of optimization pblems in robotics.

Example 7.5 (Independent-Joint Motion Model) Now suppose thatU(q)

includesut and the set of all 3 vectors for which every element is either 1, 0,
or 1. Under this model, a path can be taken along any diagonal.his still does
not change the fact that all reachable con gurations lie on grid. Therefore, the
standard grid algorithms can be applied once again. The dirence is that now
there are 3 1 edges emanating from every vertex, as opposed to & Example
7.4. This model is appropriate for robots that are construed from a collection
of links attached by revolute joints. If each joint is operatd independently, then
it makes sense that each joint could be moved either forwardackward, or held
stationary. This corresponds exactly to the actions. Howewethis model cannot
nicely approximate Euclidean shortest paths; this motivats the next example.

Example 7.6 (Euclidean Motion Model) To approximate Euclidean short-
est paths, letU(q) = S" *[f urg, in which §" ! is the m-dimensional unit sphere
centered at the origin ofR". This means that in k stages, any piecewise-linear
path in which each segment has length can be formed by a sequence of inputs.
Therefore, the set of reachable states is no longer con ned & grid. Consider
taking =1, and pick any point, such as (; ) 2 R?. How close can you come to
this point? It turns out that the set of points reachable withthis model is dense
in R" if obstacles are neglected. This means that we can come araitly close to
any point in R". Therefore, a nite grid cannot be used to represent the prdém.
Approximate solutions can still be obtained by numerically @mputing an optimal
cost-to-go function overC. This approach is presented in Section 8.5.2.

One additional issue for this problem is the precision de mefor the goal. If
the goal region is very small relative to, then complicated paths may have to be
selected to arrive precisely at the goal.

Example 7.7 (Weighted-Region Problem) In outdoor and planetary navi-
gation applications, it does not make sense to de ne obstasl in the crisp way
that has been used so far. For each patch of terrain, it is mom@nvenient to
associate a cost that indicates the estimated di culty of is traversal. This is
sometimes considered as a \grayscale" model of obstaclesheTmodel can be
easily captured in the cost terml(g; ux). The action spaces can be borrowed
from Examples 7.4 or 7.5. Stentz's algorithm [125], which istroduced in Section
12.3.2, generates optimal navigation plans for this probie even assuming that
the terrain is initially unknown. Theoretical bounds for ogimal weighted-region
planning problems are given in [106, 107]. An approximatiorigorithm appears
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Figure 7.42: There are two Pareto-optimal coordination plas for this problem,
depending on which robot has to wait.

in [118].

7.7.2 Multiple-Robot Optimality

Suppose that there are two robots as shown in Figure 7.42. Tees just enough
room to enable the robots to translate along the corridors. &h would like to

arrive at the bottom, as indicated by arrows; however, only ree can pass at a
time through the horizontal corridor. Suppose that at any istant each robot can
either beon or o . When it is on, it moves at its maximum speed, and when it

iso , it is stopped? Now suppose that each robot would like to reach its goal as

quickly as possible. This means each would like to minimizée total amount of
time that it is o . In this example, there appears to be only two sensible cheg&
1) A, stays on and moves straight to its goal whileA, is o just long enough
to let A; pass, and then moves to its goal. 2) The opposite situation @as, in
which A, stayson and A; must wait. Note that when a robot waits, there are
multiple locations at which it can wait and still yield the same time to reach the
goal. The only important information is how long the robot wa o .

Thus, the two interesting plans are that eitherA, is o for some amount of
time, tosf > 0, or Apiso for time tys . Consider a vector of costs of the form
(L1;L2), in which each component represents the cost for each robdthe costs
of the plans could be measured in terms of time wasted by waigj. This yields

4This model allows in nite acceleration. Imagine that the speeds are slow enough to allow
this approximation. If this is still not satisfactory, then jump ahead to Chapter 13.
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(O; tor ) @and (toff ; 0) for the cost vectors associated with the two plans (we call
equivalently de ne cost to be the total time traveled by eachrobot; the time
on is the same for both robots and can be subtracted from eadbr this simple
example). The two plans are better than or equivalent to anythers. Plans with
this property are called Pareto optimal (or nondominated. For example, if A,
waits 1 second too long foA; to pass, then the resulting costs are (O, + 1),
which is clearly worse than (Qte ). The resulting plan is not Pareto optimal.
More details on Pareto optimality appear in Section 9.1.1.

Another way to solve the problem is to scalarize the costs by mping them
to a single value. For example, we could nd plans that optinze the average
wasted time. In this case, one of the two best plans would be tamed, yield-
ing torf average wasted time. However, no information is retained altowhich
robot had to make the sacri ce. Scalarizing the costs usuglimposes some kind
of arti cial preference or prioritization among the robots Ultimately, only one
plan can be chosen, which might make it seem inappropriate toaintain multiple
solutions. However, nding and presenting the alternative Breto-optimal solu-
tions could provide valuable information if, for example, liese robots are involved
in a complicated application that involves many other timedependent processes.
Presenting the Pareto-optimal solutions is equivalent toidcarding all of the worse
plans and showing the best alternatives. In some applicatis, priorities between
robots may change, and if a scheduler of robots has accesshe Pareto-optimal
solutions, it is easy to change priorities by switching bet@en Pareto-optimal plans
without having to generate new plans each time.

Now the Pareto-optimality concept will be made more precisend general.
Suppose there arem robots, Al, :::, A™. Let refer to a motion plan that
gives the paths and timing functions for all robots. For eaci\', let L; denote
its cost functional, which yields a valueL;( ) 2 [0;1 ] for a given plan, . An
m-dimensional vector,L( ), is de ned as

L()=(La( );La( )szzziLm()): (7.28)

Two plans, and ¢ are calledequivalentif L( )= L( 9. A plan is said
to dominate a plan °if they are not equivalent andL;( ) Li( 9 for all i
such that 1 i m. A plan is called Pareto optimal if it is not dominated
by any others. Since many Pareto-optimal plans may be equleat, the task is
to determine one representative from each equivalence dasrhis will be called
nding the unique Pareto-optimal plans. For the example in Figure 7.42, there
are two unique Pareto-optimal plans, which were already giwn.

Scalarization  For the motion planning problem, a Pareto-optimal solutionis
also optimal for a scalar cost functional that is constructias a linear combination
of the individual costs. Let 4, :::,  be positive real constants, and let

X
=" L) (7.29)

i=1
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It is easy to show that any plan that is optimal with respect to(7.29) is also a
Pareto-optimal solution [93]. If a Pareto optimal solutionis generated in this way,
however, there is no easy way to determine what alternativesist.

Computing Pareto-optimal plans Since optimization for one robot is already
very di cult, it may not be surprising that computing Pareto -optimal plans is even
harder. For some problems, it is even possible that a continm of Pareto-optimal

solutions exist (see Example 9.3), which is very discouragi. Fortunately, for the

problem of coordinating robots on topological graphs, as msidered in Section
7.2.2, there is only a nite number of solutions [64]. A gridbased algorithm,

which is based on dynamic programming and computes all unigdPareto-optimal

coordination plans, is presented in [93]. For the special g& of two polygonal
robots moving on a tree of piecewise-linear paths, a compealgorithm is pre-

sented in [34].

Further Reading

This chapter covered some of the most direct extensions of the basic ation planning
problem. Extensions that involve uncertainties are covered througlout Part Ill, and
the introduction of di erential constraints to motion planning is th e main focus of Part
IV. Numerous other extensions can be found by searching through roboti& research
publications or the Internet.

The treatment of time-varying motion planning in Section 7.1 assumes hat all
motions are predictable. Most of the coverage is based on early work [23, 82, 116, 1;17]
other related work includes [56, 57, 86, 115, 122, 124]. To introduce uncertainteinto
this scenario, see Chapter 10. The logic-based representations of Sexti2.4 have been
extended totemporal logicsto allow time-varying aspects of discrete planning problems
(see Part IV of [61]).

For more on multiple-robot motion planning, see [6, 14, 16, 49, 50, 53, 55, 68, 93,
111, 123]. Closely related is the problem of planning for modular recon gural# robots
[29, 33, 63, 88, 137]. In both contexts, nonpositive curvature (NPC) is an importah
condition that greatly simpli es the structure of optimal paths [22, 63, 64]. For points
moving on a topological graph, the topology ofGee is described in [1]. Over the last
few years there has also been a strong interest in the coordination of @am or swarm
of robots [26, 39, 45, 46, 47, 51, 54, 99].

The complexity of assembly planning is studied in [65, 85, 108, 132]. The probin
is generally NP-hard; however, for some special cases, polynomial-tealgorithms have
been developed [5, 71, 133, 134]. Other works include [30, 70, 76, 78, 87].

Hybrid systems have attracted widespread interest over the pastdecade. Most of
this work considers how to design control laws for piecewise-smoothystems [21, 95].
Early sources of hybrid control literature appear in [69]. The manipulation planning
framework of Section 7.3.2 is based on [7, 8, 27]. The manipulation planning dme-
work presented in this chapter ignores grasping issues. For analyses éilgorithms for

grasping, see [44, 81, 101, 112, 113, 114, 119, 120, 128]. Manipulation on a microscopic

scale is considered in [20].
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A

Figure 7.43: Two translating robots moving along piecewidmear paths.

To read beyond Section 7.4 on sampling-based planning for closed kinematchains,
see [41, 43, 72, 136]. A complete planner for some closed chains is presentedli®y].
For related work on inverse kinematics, see [48, 103]. The power of reduadt degrees
of freedom in robot systems was shown in [24].

Section 7.5 is a synthesis of several applications. The application of miamn planning
techniques to problems in computational biology is a booming area; see [1Q]1, 13, 42,
84, 91, 92, 96, 138] for some representative papers. The knot-planning coveragéased
on [90]. The box-folding presentation is based on [98]. A robotic system anglanning
technique for creating origami is presented in [17].

The coverage planning methods presented in Section 7.6 are based on [38[d [58,
59]. A survey of coverage planning appears in [37]. Other references lade [2, 3, 25,
60, 74, 79, 135]. For discrete environments, approximation algorithms for the mblem
of optimally visiting all states in a goal set (the orienteering problem) are presented and
analyzed in [19, 32].

Beyond two dimensions, optimal motion planning is extremely di cul t. See Section
8.5.2 for dynamic programming-based approximations. See [35, 110] for approximat
shortest paths in R3. The weighted region problem is considered in [106, 107]. Pareto-
optimal coordination is considered in [34, 64, 93].

Exercises

1. Consider the obstacle region, (7.1), in the state space for time-varyim motion
planning.

(a) To ensure that X ops is polyhedral, what kind of paths should be allowed?
Show how the model primitives H; that de ne O are expressed in general,
usingt as a parameter.

(b) Repeat the exercise, but for ensuring thatX gps is semi-algebraic.

2. Propose a way to adapt the sampling-based roadmap algorithm of Section 5.6 to
solve the problem of time-varying motion planning with bounded speed

3. Develop an e cient algorithm for computing the obstacle region for two tr anslat-
ing polygonal robots that each follow a linear path.

4. Sketch the coordination space for the two robots moving along the xedpaths
shown in Figure 7.43.
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. Suppose there are two robots, and each moves on its own roadmap of three pat

The paths in each roadmap are arranged end-to-end in a triangle.
(@) Characterize the xed-roadmap coordination space that results, induding a
description of its topology.

(b) Now suppose there aren robots, each on a triangular roadmap, and charac-
terize the xed-roadmap coordination space.

. Consider the state space obtained as the Cartesian product of the C-apes ofn

identical robots. Suppose that each robot is labeled with a unique intger. Show
that X can be partitioned nicely into n! regions in which X o, appears identical
and the only di erence is the labels (which indicate the particular robots that are
in collision).

. Suppose there are two robots, and each moves on its own roadmap of three pat

The paths in one roadmap are arranged end-to-end in a triangle, and the paths
in the other are arranged as a Y. Characterize the xed-roadmap coordination
space that results, including a description of its topology.

. Design an e cient algorithm that takes as input a graph representation of the

connectivity of a linkage and computes an active-passive decompositiorAssume
that all links are revolute. The algorithm should work for either 2D or 3D lin kages
(the dimension is also an input). Determine the asymptotic running time of your
algorithm.

. Consider the problem of coordinating the motion of two robots that move abng

precomputed paths but in the presence of predictable moving obstdes. Develop
a planning algorithm for this problem.

Consider a manipulator inW = R2 made of four links connected in a chain by
revolute joints. There is unit distance between the joints, and the rst joint is
attached at (0;0) in W = R?. Suppose that the end of the last link, which is
position (1;0) in its body frame, is held at (0;2) 2 W .

(@) Use kinematics expressions to express the closure constrainfisr a con gu-
ration q2 C.
(b) Convert the closure constraints into polynomial form.

(c) Use di erentiation to determine the constraints on the allowable velocities
that maintain closure at a con guration q2 C.

Implementations

11.

12.

Implement the vertical decomposition algorithm to solve the path-tuning problem,
as shown in Figure 7.5.

Use grid-based sampling and a search algorithm to compute collisionde motions
of three robots moving along predetermined paths.

7.7.

13.

14.

15.
16.

17.

18.

19.

20.
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Under the conditions of Exercise 12, compute Pareto-optimal coordinatin strate-

gies that optimize the time (number of stages) that each robot takes to real its

goal. Design a wavefront propagation algorithm that keeps track of the com-
plete (ignoring equivalent strategies) set of minimal Pareto-optimal @ordination

strategies at each reached state. Avoid storing entire plans at each disetized

state.

To gain an appreciation of the di culties of planning for closed kinematic chains,
try motion planning for a point on a torus among obstacles using only the impicit
torus constraint given by (6.40). To simplify collision detection, the obstacles can
be a collection of balls inR® that intersect the torus. Adapt a sampling-based
planning technique, such as the bidirectional RRT, to traverse he torus and solve
planning problems.

Implement the spanning-tree coverage planning algorithm of Section 8.

Develop an RRT-based planning algorithm that causes the robot to chase an
unpredictable moving target in a planar environment that contains obstacles.
The algorithm should run quickly enough so that replanning can occur duing
execution. The robot should execute the rst part of the most recently computed
path while simultaneously computing a better plan for the next time increment.

Modify Exercise 16 so that the robot assumes the target follows a préctable,
constant-velocity trajectory until some deviation is observed.

Show how to handle unexpected obstacles by using a fast enough plang algo-
rithm. For simplicity, suppose the robot is a point moving in a polygonal obstacle
region. The robot rst computes a path and then starts to execute it. If the
obstacle region changes, then a new path is computed from the robot's cuent
position. Use vertical decomposition or another algorithm of your choice (po-
vided it is fast enough). The user should be able to interactively phce or move
obstacles during plan execution.

Use the manipulation planning framework of Section 7.3.2 to develop an algithm

that solves the famous Towers of Hanoi problem by a robot that carries the mgs
[27]. For simplicity, suppose a polygonal robot moves polygonal parts itW = R?
and rotation is not allowed. Make three pegs, and initially place all parts on
one peg, sorted from largest to smallest. The goal is to move all of the partsot
another peg while preserving the sorting.

Use grid-based approximation to solve optimal planning problems for a gint
robot in the plane. Experiment with using di erent neighborhoods and metrics.
Characterize the combinations under which good and bad approximations &
obtained.
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