PLANNING
ALGORITHMS

Chapter 1

Introduction

Steven M. LaValle

University of Illinois

Copyright Steven M. LaValle 2006

Available for downloading athttp://planning.cs.uiuc.edu/

Published by Cambridge University Press



Chapter 1

Introduction

1.1 Planning to Plan

Planning is a term that means di erent things to dierent groups of pele.
Roboticsaddresses the automation of mechanical systems that havesieg, actu-
ation, and computation capabilities (similar terms, such sautonomous systems
are also used). A fundamental need in robotics is to have atgbms that convert
high-level speci cations of tasks from humans into low-l&f descriptions of how
to move. The termsmotion planning and trajectory planning are often used for
these kinds of problems. A classical version of motion plaing is sometimes re-
ferred to as thePiano Mover's Problem Imagine giving a precise computer-aided
design (CAD) model of a house and a piano as input to an algorith The algo-
rithm must determine how to move the piano from one room to artoer in the
house without hitting anything. Most of us have encounteredimilar problems
when moving a sofa or mattress up a set of stairs. Robot motigtanning usually
ignores dynamics and other di erential constraints and fagses primarily on the
translations and rotations required to move the piano. Reoé work, however,
does consider other aspects, such as uncertainties, di etial constraints, model-
ing errors, and optimality. Trajectory planning usually rders to the problem of
taking the solution from a robot motion planning algorithm and determining how
to move along the solution in a way that respects the mechauiclimitations of
the robot.

Control theory has historically been concerned with designing inputs to pb-
ical systems described by di erential equations. These clouinclude mechanical
systems such as cars or aircraft, electrical systems suchhasse lters, or even sys-
tems arising in areas as diverse as chemistry, economicgj anciology. Classically,
control theory has developedeedback policieswhich enable an adaptive response
during execution, and has focused ostability, which ensures that the dynamics
do not cause the system to become wildly out of control. A laegemphasis is also
placed on optimizing criteria to minimize resource consurtipn, such as energy
or time. In recent control theory literature, motion planning sometimes refers to

3

4 S. M. LaValle: Planning Algorithms

the construction of inputs to a nonlinear dynamical systemhat drives it from an

initial state to a specied goal state. For example, imagindrying to operate a

remote-controlled hovercraft that glides over the surfacef a frozen pond. Sup-
pose we would like the hovercraft to leave its current restinlocation and come to
rest at another speci ed location. Can an algorithm be desigd that computes
the desired inputs, even in an ideal simulator that neglectancertainties that arise
from model inaccuracies? It is possible to add other consid&ons, such as un-
certainties, feedback, and optimality; however, the prokim is already challenging
enough without these.

In arti cial intelligence , the terms planning and Al planning take on a more
discrete avor. Instead of moving a piano through a continuas space, as in the
robot motion planning problem, the task might be to solve a mele, such as
the Rubik's cube or a sliding-tile puzzle, or to achieve a t&sthat is modeled
discretely, such as building a stack of blocks. Although sugbroblems could be
modeled with continuous spaces, it seems natural to de ne anite set of actions
that can be applied to a discrete set of states and to constiiug solution by giving
the appropriate sequence of actions. Historically, planninhas been considered
di erent from problem solving however, the distinction seems to have faded away
in recent years. In this book, we do not attempt to make a distiction between the
two. Also, substantial e ort has been devoted to representan language issues
in planning. Although some of this will be covered, it is maiyl outside of our
focus. Many decision-theoretic ideas have recently beercamporated into the Al
planning problem, to model uncertainties, adversarial snarios, and optimization.
These issues are important and are considered in detail infPall.

Given the broad range of problems to which the term planningds been ap-
plied in the arti cial intelligence, control theory, and robotics communities, you
might wonder whether it has a speci c meaning. Otherwise, 81 about anything
could be considered as an instance of planning. Some commtements for plan-
ning problems will be discussed shortly, but rst we consideplanning as a branch
of algorithms. Hence, this book is entitledPlanning Algorithms. The primary
focus is on algorithmic and computational issues of planrgrproblems that have
arisen in several disciplines. On the other hand, this doe®tnmean that plan-
ning algorithms refers to an existing community of researeins within the general
algorithms community. This book it not limited to combinatorics and asymp-
totic complexity analysis, which is the main focus in pure gbrithms. The focus
here includes numerous concepts that are not necessarilga@ithmic but aid in
modeling, solving, and analyzing planning problems.

Natural questions at this point are, What is a plan? How is a plarepresented?
How is it computed? What is it supposed to achieve? How is its glitg evaluated?
Who or what is going to use it? This chapter provides generahawers to these
questions. Regarding the user of the plan, it clearly depesan the application.
In most applications, an algorithm executes the plan; howey, the user could even
be a human. Imagine, for example, that the planning algoritin provides you with



1.2. MOTIVATIONAL EXAMPLES AND APPLICATIONS 5

1 2 3 4
5 6 7 8
9 10 11 14
13 14 15

(@) (b)

Figure 1.1: The Rubik's cube (a), sliding-tile puzzle (b), ad other related puzzles
are examples of discrete planning problems.

an investment strategy.

In this book, the user of the plan will frequently be referredo as a robot
or a decision maker In arti cial intelligence and related areas, it has become
popular in recent years to use the ternagent possibly with adjectives to yield an
intelligent agentor software agent Control theory usually refers to the decision
maker as acontroller. The plan in this context is sometimes referred to as a
policy or control law. In a game-theoretic context, it might make sense to refer
to decision makers aplayers Regardless of the terminology used in a particular
discipline, this book is concerned with planning algoriths that nd a strategy
for one or more decision makers. Therefore, remember thaties such asrobot,
agent and controller are interchangeable.

1.2 Motivational Examples and Applications

Planning problems abound. This section surveys several exples and applica-
tions to inspire you to read further.

Why study planning algorithms? There are at least two good esons. First, it
is fun to try to get machines to solve problems for which everumans have great
di culty. This involves exciting challenges in modeling planning problems, design-
ing e cient algorithms, and developing robust implementatons. Second, planning
algorithms have achieved widespread successes in sevadlstries and academic
disciplines, including robotics, manufacturing, drug dégn, and aerospace appli-
cations. The rapid growth in recent years indicates that manmore fascinating
applications may be on the horizon. These are exciting times study planning
algorithms and contribute to their development and use.

Discrete puzzles, operations, and scheduling Chapter 2 covers discrete
planning, which can be applied to solve familiar puzzles, &lu as those shown in

6 S. M. LaValle: Planning Algorithms

Figure 1.2: Remember puzzles like this? Imagine trying to Ise one with an
algorithm. The goal is to pull the two bars apart. This exampe is called the Alpha
1.0 Puzzle. It was created by Boris Yamrom and posted as a raseh benchmark
by Nancy Amato at Texas A&M University. This solution and animation were
made by James Ku ner (see [17] for the full movie).

Figure 1.1. They are also good at games such as chess or briffd. Discrete
planning techniques have been used in space applicationgluding a rover that

traveled on Mars and the Earth Observing One satellite [5, 25]. When combined
with methods for planning in continuous spaces, they can sel complicated tasks
such as determining how to bend sheet metal into complicateabjects [10]; see
Section 7.5 for the related problem of folding cartons.

A motion planning puzzle The puzzles in Figure 1.1 can be easily discretized
because of the regularity and symmetries involved in movirige parts. Figure 1.2
shows a problem that lacks these properties and requires phang in a continuous
space. Such problems are solved by using the motion plannitechniques of
Part Il. This puzzle was designed to frustrate both humans ahmotion planning
algorithms. It can be solved in a few minutes on a standard psonal computer
(PC) using the techniques in Section 5.5. Many other puzzlésive been developed
as benchmarks for evaluating planning algorithms.

An automotive assembly puzzle Although the problem in Figure 1.2 may
appear to be pure fun and games, similar problems arise in immant applications.
For example, Figure 1.3 shows an automotive assembly protléor which software
is needed to determine whether a wiper motor can be insertednd removed)



1.2. MOTIVATIONAL EXAMPLES AND APPLICATIONS 7

Figure 1.3: An automotive assembly task that involves insdrtg or removing a
windshield wiper motor from a car body cavity. This problem s solved for clients
using the motion planning software of Kineo CAM (courtesy of Kheo CAM).

from the car body cavity. Traditionally, such a problem is slved by constructing
physical models. This costly and time-consuming part of thdesign process can
be virtually eliminated in software by directly manipulating the CAD models.

The wiper example is just one of many. The most widespread imgt on
industry comes from motion planning software developed atikeo CAM. It has
been integrated into Robcad (eM-Workplace) from Tecnomatj which is a leading
tool for designing robotic workcells in numerous factoriesround the world. Their
software has also been applied to assembly problems by Retakord, Airbus,
Optivus, and many other major corporations. Other compangand institutions
are also heavily involved in developing and delivering matn planning tools for
industry (many are secret projects, which unfortunately canot be described here).
One of the rst instances of motion planning applied to real ssembly problems
is documented in [3].

Sealing cracks in automotive assembly Figure 1.4 shows a simulation of
robots performing sealing at the Volvo Cars assembly plam iTorslanda, Sweden.
Sealing is the process of using robots to spray a sticky sudste along the seams
of a car body to prevent dirt and water from entering and causg corrosion. The
entire robot workcell is designed using CAD tools, which autoatically provide
the necessary geometric models for motion planning softwarThe solution shown
in Figure 1.4 is one of many problems solved for Volvo Cars amihers using
motion planning software developed by the Fraunhofer Chalens Centre (FCC).
Using motion planning software, engineers need only spedife high-level task of
performing the sealing, and the robot motions are computeditomatically. This
saves enormous time and expense in the manufacturing prazes

8 S. M. LaValle: Planning Algorithms

Figure 1.4: An application of motion planning to the sealing cess in automotive
manufacturing. Planning software developed by the Fraunfier Chalmers Centre
(FCC) is used at the Volvo Cars plant in Sweden (courtesy of o Cars and
FCC).



1.2. MOTIVATIONAL EXAMPLES AND APPLICATIONS 9

Figure 1.5: Using mobile robots to move a piano [6].

Moving furniture Returning to pure entertainment, the problem shown in
Figure 1.5 involves moving a grand piano across a room usirigdée mobile robots
with manipulation arms mounted on them. The problem is humarusly inspired
by the phrasePiano Mover's Problem Collisions between robots and with other
pieces of furniture must be avoided. The problem is furtheroenplicated because
the robots, piano, and oor form closed kinematic chains, wbh are covered in
Sections 4.4 and 7.4.

Navigating mobile robots A more common task for mobile robots is to re-
quest them to navigate in an indoor environment, as shown inigure 1.6a. A
robot might be asked to perform tasks such as building a map tie environ-
ment, determining its precise location within a map, or arsing at a particular
place. Acquiring and manipulating information from sensorgs quite challenging
and is covered in Chapters 11 and 12. Most robots operate initepof large un-
certainties. At one extreme, it may appear that having manyensors is bene cial
because it could allow precise estimation of the environnteand the robot po-

10 S. M. LaValle: Planning Algorithms

(@) (b)

Figure 1.6: (a) Several mobile robots attempt to successfghavigate in an indoor
environment while avoiding collisions with the walls and e other. (b) Imagine
using a lantern to search a cave for missing people.

Figure 1.7: A mobile robot can reliably construct a good mapfdts environ-
ment (here, the Intel Research Lab) while simultaneously ¢alizing itself. This
is accomplished using laser scanning sensors and perfognencient Bayesian
computations on the information space [7].



1.2. MOTIVATIONAL EXAMPLES AND APPLICATIONS 11

sition and orientation. This is the premise of many existingystems, as shown
for the robot system in Figure 1.7, which constructs a map ofsi environment.

It may alternatively be preferable to develop low-cost andeliable robots that

achieve speci c tasks with little or no sensing. These trade s are carefully con-

sidered in Chapters 11 and 12. Planning under uncertainty ihie focus of Part

1.

If there are multiple robots, then many additional issues @&e. How can the
robots communicate? How can their information be integratéd Should their
coordination be centralized or distributed? How can collishs between them
be avoided? Do they each achieve independent tasks, or areythrequired to
collaborate in some way? If they are competing in some way,eth concepts from
game theory may apply. Therefore, some game theory appeansSections 9.3,
9.4,10.5, 11.7, and 13.5.

Playing hide and seek  One important task for a mobile robot is playing the
game of hide and seek. Imagine entering a cave in complete kaess. You are
given a lantern and asked to search for any people who might beoving about,
as shown in Figure 1.6b. Several questions might come to mindoes a strategy
even exist that guarantees | will nd everyone? If not, then bw many other
searchers are needed before this task can be completed? Wh&hould | move
next? Can | keep from exploring the same places multiple tire@ This scenario
arises in many robotics applications. The robots can be endoed in surveillance
systems that use mobile robots with various types of sensdisiotion, thermal,
cameras, etc.). In scenarios that involve multiple robots ih little or no com-
munication, the strategy could help one robot locate othersOne robot could
even try to locate another that is malfunctioning. Outside brobotics, software
tools can be developed that assist people in systematicafigarching or covering
complicated environments, for applications such as law eméement, search and
rescue, toxic cleanup, and in the architectural design of @ge buildings. The
problem is extremely di cult because the status of the pursit must be carefully
computed to avoid unnecessarily allowing the evader to sieback to places al-
ready searched. The information-space concepts of Chapielr become critical in
solving the problem. For an algorithmic solution to the hideand-seek game, see
Section 12.4.

Making smart video game characters The problem in Figure 1.6b might
remind you of a video game. In the arcade classRacman the ghosts are pro-
grammed to seek the player. Modern video games involve humbie characters
that exhibit much more sophisticated behavior. Planning gorithms can enable
game developers to program character behaviors at a highevél, with the expec-
tation that the character can determine on its own how to movén an intelligent

way.

At present there is a large separation between the planniragorithm and

12 S. M. LaValle: Planning Algorithms

Figure 1.8: Across the top, a motion computed by a planning agthm, for a
digital actor to reach into a refrigerator [14]. In the loweleft, a digital actor plays
chess with a virtual robot [16]. In the lower right, a planniig algorithm computes
the motions of 100 digital actors moving across terrain witlobstacles [19].

video-game communities. Some developers of planning altons are recently
considering more of the particular concerns that are impaat in video games.
Video-game developers have to invest too much energy at pneiseo adapt ex-

isting techniques to their problems. For recent books thatra geared for game
developers, see [2, 8].

Virtual humans and humanoid robots Beyond video games, there is broader
interest in developing virtual humans. See Figure 1.8. In th eld of computer
graphics, computer-generated animations are a primary fe€. Animators would
like to develop digital actors that maintain many elusive stle characteristics of
human actors while at the same time being able to design mati® for them from
high-level descriptions. It is extremely tedious and timeansuming to specify all
motions frame-by-frame. The development of planning algithms in this context
is rapidly expanding.

Why stop at virtual humans? The Japanese robotics community has inspired
the world with its development of advanced humanoid robotsin 1997, Honda
shocked the world by unveiling an impressive humanoid thabald walk up stairs



1.2. MOTIVATIONAL EXAMPLES AND APPLICATIONS 13

@) (b)

Figure 1.9: (a) This is a picture of the H7 humanoid robot and am of its de-
velopers, S. Kagami. It was developed in the JSK Laboratoryt ghe University
of Tokyo. (b) Bringing virtual reality and physical reality together. A planning
algorithm computes stable motions for a humanoid to grab anbstructed object
on the oor [18].

and recover from lost balance. Since that time, numerous @arations and in-
stitutions have improved humanoid designs. Although most ahe mechanical
issues have been worked out, two principle di culties that emain are sensing and
planning. What good is a humanoid robot if it cannot be prognamed to accept
high-level commands and execute them autonomously? Figuted shows work
from the University of Tokyo for which a plan computed in simution for a hu-
manoid robot is actually applied on a real humanoid. Figure.10 shows humanoid
projects from the Japanese automotive industry.

Parking cars and trailers The planning problems discussed so far have not
involved di erential constraints, which are the main focusn Part IV. Consider the
problem of parking slow-moving vehicles, as shown in Figufell. Most people
have a little di culty with parallel parking a car and much gr eater di culty
parking a truck with a trailer. Imagine the di culty of paral lel parking an airport
baggage train! See Chapter 13 for many related examples. Whaakes these
problems so challenging? A car is constrained to move in théettion that the
rear wheels are pointing. Maneuvering the car around obstas therefore becomes
challenging. If all four wheels could turn to any orientatia, this problem would
vanish. The term nonholonomic planningencompasses parking problems and
many others. Figure 1.12a shows a humorous driving problerigure 1.12b shows
an extremely complicated vehicle for which nonholonomic ghning algorithms
were developed and applied in industry.

14 S. M. LaValle: Planning Algorithms

(a) (b)

Figure 1.10: Humanoid robots from the Japanese automotiveduostry: (a) The
latest Asimo robot from Honda can run at 3 km/hr (courtesy of Hond); (b)
planning is incorporated with vision in the Toyota humanoidso that it plans to
grasp objects [12].

\Wreckless" driving Now consider driving the car at high speeds. As the
speed increases, the car must be treated as a dynamical sygstdue to momen-
tum. The car is no longer able to instantaneously start and ep, which was
reasonable for parking problems. Although there exist plammy algorithms that
address such issues, there are still many unsolved resegsobblems. The impact
on industry has not yet reached the level achieved by ordinamotion planning, as
shown in Figures 1.3 and 1.4. By considering dynamics in thesign process, per-
formance and safety evaluations can be performed before stracting the vehicle.
Figure 1.13 shows a solution computed by a planning algoriththat determines
how to steer a car at high speeds through a town while avoidingpllisions with
buildings. A planning algorithm could even be used to assestether a sports
utility vehicle tumbles sideways when stopping too quicklyTremendous time and
costs can be spared by determining design aws early in thexadopment process
via simulations and planning. One related problem igeri cation , in which a me-
chanical system design must be thoroughly tested to make suthat it performs
as expected in spite of all possible problems that could goemg during its use.
Planning algorithms can also help in this process. For exarep the algorithm
can try to violently crash a vehicle, thereby establishinghat a better design is
needed.

Aside from aiding in the design process, planning algorithnthat consider
dynamics can be directly embedded into robotic systems. kige 1.13b shows an



1.2. MOTIVATIONAL EXAMPLES AND APPLICATIONS 15

@) (b)

Figure 1.11: Some parking illustrations from government nmaials for driver test-
ing: (a) parking a car (from the 2005Missouri Driver Guide); (b) parking a
tractor trailer (published by the Pennsylvania Division ofMotor Vehicles). Both
humans and planning algorithms can solve these problems.

application that involves a di cult combination of most of t he issues mentioned
so far. Driving across rugged, unknown terrain at high speednvolves dynam-
ics, uncertainties, and obstacle avoidance. Numerous ungad research problems
remain in this context.

Flying Through the Air or in Space Driving naturally leads to ying. Plan-
ning algorithms can help to navigate autonomous helicopterthrough obstacles.
They can also compute thrusts for a spacecraft so that collims are avoided
around a complicated structure, such as a space station. Ire@ion 14.1.3, the
problem of designing entry trajectories for a reusable spaaraft is described. Mis-
sion planning for interplanetary spacecraft, including dar sails, can even be per-
formed using planning algorithms [11].

Designing better drugs Planning algorithms are even impacting elds as far
away from robotics as computational biology. Two major prdlems are protein
folding and drug design. In both cases, scientists attempbtexplain behaviors
in organisms by the way large organic molecules interact. &umolecules are
generally exible. Drug molecules are small (see Figure #)] and proteins usually
have thousands of atoms. Thelocking probleminvolves determining whether a
exible molecule can insert itself into a protein cavity, asshown in Figure 1.14,
while satisfying other constraints, such as maintaining Y@ energy. Once geometric
models are applied to molecules, the problem looks very slanito the assembly
problem in Figure 1.3 and can be solved by motion planning agthms. See
Section 7.5 and the literature at the end of Chapter 7.

Perspective  Planning algorithms have been applied to many more problems
than those shown here. In some cases, the work has progredsenh modeling,

16 S. M. LaValle: Planning Algorithms

(a) (b)

Figure 1.12: (a) Having a little fun with di erential constraints. An obstacle-
avoiding path is shown for a car that must move forward and caanly turn left.
Could you have found such a solution on your own? This is an gagroblem for
several planning algorithms. (b) This gigantic truck was dggned to transport
portions of the Airbus A380 across France. Kineo CAM developednholonomic
planning software that plans routes through villages that id obstacles and
satisfy di erential constraints imposed by 20 steering axls. Jean-Paul Laumond,
a pioneer of nonholonomic planning, is also pictured.

@) (b)

Figure 1.13: Reckless driving: (a) Using a planning algorith to drive a car quickly
through an obstacle course [4]. (b) A contender developed Ibiye Red Team
from Carnegie Mellon University in the DARPA Grand Challengedr autonomous
vehicles driving at high speeds over rugged terrain (coudg of the Red Team).



1.3. BASIC INGREDIENTS OF PLANNING 17
Caeine Ibuprofen AutoDock
Nicotine THC AutoDock

Figure 1.14: On the left, several familiar drugs are pictute as ball-and-stick
models (courtesy of the New York University MathMol Library [D]). On the
right, 3D models of protein-ligand docking are shown from thAutoDock software
package (courtesy of the Scripps Research Institute).

to theoretical algorithms, to practical software that is ued in industry. In other
cases, substantial research remains to bring planning meits to their full poten-
tial. The future holds tremendous excitement for those whoagticipate in the
development and application of planning algorithms.

1.3 Basic Ingredients of Planning

Although the subject of this book spans a broad class of modelad problems,
there are several basic ingredients that arise throughoutrtually all of the topics
covered as part of planning.

State Planning problems involve astate spacethat captures all possible situa-
tions that could arise. Thestate could, for example, represent the position and
orientation of a robot, the locations of tiles in a puzzle, othe position and ve-
locity of a helicopter. Both discrete ( nite, or countably in nite) and continuous
(uncountably in nite) state spaces will be allowed. One raaring theme is that
the state space is usually representachplicitly by a planning algorithm. In most
applications, the size of the state space (in terms of numbef states or combi-
natorial complexity) is much too large to be explicitly repesented. Nevertheless,
the de nition of the state space is an important component irthe formulation of
a planning problem and in the design and analysis of algoritts that solve it.

18 S. M. LaValle: Planning Algorithms

Time All planning problems involve a sequence of decisions that stibe applied
over time. Time might be explicitly modeled, as in a problemwush as driving a
car as quickly as possible through an obstacle course. Altatively, time may be
implicit, by simply re ecting the fact that actions must follow in succession, as
in the case of solving the Rubik's cube. The particular timesiunimportant, but
the proper sequence must be maintained. Another example ofplitit time is a
solution to the Piano Mover's Problem; the solution to movig the piano may be
converted into an animation over time, but the particular sged is not speci ed in
the plan. As in the case of state spaces, time may be either diste or continuous.
In the latter case, imagine that a continuum of decisions isding made by a plan.

Actions A plan generatesactionsthat manipulate the state. The termsactions
and operatorsare common in arti cial intelligence; in control theory androbotics,
the related terms areinputs and controls. Somewhere in the planning formulation,
it must be speci ed how the state changes when actions are diggl. This may be
expressed as a state-valued function for the case of diserétme or as an ordinary
di erential equation for continuous time. For most motion ganning problems,
explicit reference to time is avoided by directly specifym a path through a con-
tinuous state space. Such paths could be obtained as the igtal of di erential
equations, but this is not necessary. For some problems, icts could be chosen
by nature, which interfere with the outcome and are not under the conti of the
decision maker. This enables uncertainty in predictabilt to be introduced into
the planning problem; see Chapter 10.

Initial and goal states A planning problem usually involves starting in some
initial state and trying to arrive at a speci ed goal state orany state in a set of
goal states. The actions are selected in a way that tries to ke this happen.

A criterion  This encodes the desired outcome of a plan in terms of the stat
and actions that are executed. There are generally two di ent kinds of planning
concerns based on the type of criterion:

1. Feasibility: Find a plan that causes arrival at a goal state, regardless i
e ciency.

2. Optimality:  Find a feasible plan that optimizes performance in some care
fully speci ed manner, in addition to arriving in a goal statke.

For most of the problems considered in this book, feasibifiis already challenging
enough; achieving optimality is considerably harder for nsb problems. There-
fore, much of the focus is on nding feasible solutions to pbtems, as opposed
to optimal solutions. The majority of literature in robotics, control theory, and
related elds focuses on optimality, but this is not necess#y important for many
problems of interest. In many applications, it is di cult to even formulate the



1.4. ALGORITHMS, PLANNERS, AND PLANS 19

right criterion to optimize. Even if a desirable criterion @n be formulated, it may
be impossible to obtain a practical algorithm that compute®ptimal plans. In
such cases, feasible solutions are certainly preferablentaving no solutions at all.
Fortunately, for many algorithms the solutions produced a not too far from opti-
mal in practice. This reduces some of the motivation for ndig optimal solutions.
For problems that involve probabilistic uncertainty, howeer, optimization arises
more frequently. The probabilities are often utilized to otain the best perfor-
mance in terms of expected costs. Feasibility is often asgted with performing
a worst-case analysis of uncertainties.

A plan In general, a plan imposes a speci ¢ strategy or behavior ondgcision
maker. A plan may simply specify a sequence of actions to bekém; however,
it could be more complicated. If it is impossible to predictuture states, then
the plan can specify actions as a function of state. In this sa, regardless of
the future states, the appropriate action is determined. Usg terminology from
other elds, this enablesfeedbackor reactive plans It might even be the case
that the state cannot be measured. In this case, the appropte action must be
determined from whatever information is available up to thecurrent time. This
will generally be referred to as annformation state, on which the actions of a
plan are conditioned.

1.4 Algorithms, Planners, and Plans

State
Machine

In nite Tape
[1]o]1] 1] of 1fof1] e

Figure 1.15: According to the Church-Turing thesis, the notin of an algorithm is
equivalent to the notion of a Turing machine.

1.4.1 Algorithms

What is a planning algorithm? This is a di cult question, and a precise math-
ematical de nition will not be given in this book. Instead, the general idea will
be explained, along with many examples of planning algoritiis. A more basic
question is, What is an algorithm? One answer is the classicturing machine

model, which is used to de ne an algorithm in theoretical coputer science. A
Turing machine is a nite state machine with a special head that can read and

20 S. M. LaValle: Planning Algorithms

Machine
T ~_Sensing
Environment \ M ‘ E
Actuation:
(@) (b)

Figure 1.16: (a) The boundary between machine and environmtés considered as
an arbitrary line that may be drawn in many ways depending ontte context. (b)
Once the boundary has been drawn, it is assumed that the manki M , interacts
with the environment, E, through sensing and actuation.

write along an in nite piece of tape, as depicted in Figure 15. The Church-
Turing thesis states that an algorithmis a Turing machine (see [13, 23] for more
details). The input to the algorithm is encoded as a string of symbols (usually
a binary string) and then is written to the tape. The Turing machine reads the
string, performs computations, and then decides whether tacceptor reject the
string. This version of the Turing machine only solvedecision problemshowever,
there are straightforward extensions that can yield otherekired outputs, such as
a plan.

The Turing model is reasonable for many of the algorithms irhis book; how-
ever, others may not exactly t. The trouble with using the Turing machine in
some situations is that plans often interact with the physial world. As indicated
in Figure 1.16, the boundary between the machine and the envhment is an
arbitrary line that varies from problem to problem. Once dran, sensorsprovide
information about the environment; this provides input to the machine during
execution. The machine then executes actions, which proeslactuation to the
environment. The actuation may alter the environment in sora way that is later
measured by sensors. Therefore, the machine and its envimoent are closely cou-
pled during execution. This is fundamental to robotics and any other elds in
which planning is used.

Using the Turing machine as a foundation for algorithms usulglimplies that
the physical world must be rst carefully modeled and written on the tape before
the algorithm can make decisions. If changes occur in the weiduring execution
of the algorithm, then it is not clear what should happen. Foexample, a mobile
robot could be moving in a cluttered environment in which pgade are walking
around. As another example, a robot might throw an object onta table without
being able to precisely predict how the object will come to s& It can take
measurements of the results with sensors, but it again becema di cult task to
determine how much information should be explicitly modeteand written on the
tape. Theon-line algorithm model is more appropriate for these kinds of problems



1.4. ALGORITHMS, PLANNERS, AND PLANS 21

Turing @
Robot

In nite Row of Switches

Figure 1.17: Arobot and an in nite sequence of switches calibe used to simulate
a Turing machine. Through manipulation, however, many othekinds of behavior
could be obtained that fall outside of the Turing model.

[15, 21, 24]; however, it still does not capture a notion ofg@drithms that is broad
enough for all of the topics of this book.

Processes that occur in a physical world are more complicdtéhan the inter-
action between a state machine and a piece of tape lled witlysibols. It is even
possible to simulate the tape by imagining a robot that inteacts with a long row
of switches as depicted in Figure 1.17. The switches serve ttame purpose as the
tape, and the robot carries a computer that can simulate thenite state machine?
The complicated interaction allowed between a robot and itenvironment could
give rise to many other models of computatiof. Thus, the term algorithm will be
used somewhat less formally than in the theory of computatio Both planners
and plansare considered as algorithms in this book.

1.4.2 Planners

A planner simply constructs a plan and may be a machine or a huam. If the
planner is a machine, it will generally be considered as a pling algorithm. In
many circumstances it is an algorithm in the strict Turing sase; however, this is
not necessary. In some cases, humans become planners byldpieg a plan that
works in all situations. For example, it is perfectly acceptble for a human to
design a state machine that is connected to the environmergde Section 12.3.1).
There are no additional inputs in this case because the humdul lls the role
of the algorithm. The planning model is given as input to the liman, and the
human \computes" a plan.

1.4.3 Plans

Once a plan is determined, there are three ways to use it:

1Of course, having in nitely long tape seems impossible in tke physical world. Other versions
of Turing machines exist in which the tape is nite but as long as necessary to process the given
input. This may be more appropriate for the discussion.

2Performing computations with mechanical systems is discused in [22]. Computation models
over the reals are covered in [1].

22 S. M. LaValle: Planning Algorithms

M __Sensing — 1_Sensing
v - E Machine/|™
Plan : o Plan - E
X Actuation Actuation
Planner Planner
() (b)

Figure 1.18: (a) A planner produces a plan that may be executdy the machine.
The planner may either be a machine itself or even a human. (B)lternatively,
the planner may design the entire machine.

1. Execution: Execute it either in simulation or in a mechanical device (foot)
connected to the physical world.

2. Renement: Re ne itinto a better plan.

3. Hierarchical Inclusion:  Package it as an action in a higher level plan.

Each of these will be explained in succession.

Execution A plan is usually executed by a machine. A human could alterna
tively execute it; however, the case of machine executiontise primary focus of
this book. There are two general types of machine executiofihe rst is depicted
in Figure 1.18a, in which the planner produces plan, which is encoded in some
way and given as input to the machine. In this case, the macheénis considered
programmableand can accept possible plans from a planner before execatidt
will generally be assumed that once the plan is given, the ntdane becomes au-
tonomous and can no longer interact with the planner. Of cose, this model
could be extended to allow machines to be improved over timg beceiving better
plans; however, we want a strict notion of autonomy for the dcussion of planning
in this book. This approach does not prohibit the updating oplans in practice;
however, this is not preferred because plans should alreadg designed to take
into account new information during execution.

The second type of machine execution of a plan is depicted inghbre 1.18b.
In this case, the plan produced by the planner encodes an eatimachine. The
plan is a special-purpose machine that is designed to solve the spetasks given
originally to the planner. Under this interpretation, one mg be aminimalist and
design the simplest machine possible that su ciently soh&the desired tasks. If
the plan is encoded as a nite state machine, then it can sonmietes be considered



1.4. ALGORITHMS, PLANNERS, AND PLANS 23

Compute a collision-

/" free path
Geometric model \
of the world

Smooth it to satisfy Design a trajectory
some di erential > (velocity function)
constraints along the path

Design a feedback

control law that tracks
the trajectory :

Execute the
feedback plan

Figure 1.19: A re nement approach that has been used for detes in robotics.

M, M, E>

Y
Y

E,

Figure 1.20: In a hierarchical model, the environment of onmachine may itself
contain a machine.

as an algorithm in the Turing sense (depending on whether coecting the machine
to a tape preserves its operation).

Re nement If a plan is used for re nement, then a planner accepts it as jput
and determines a new plan that is hopefully an improvement. e new plan
may take more problem aspects into account, or it may simplyeomore e cient.
Re nement may be applied repeatedly, to produce a sequenckeimproved plans,
until the nal one is executed. Figure 1.19 shows a re nemerapproach used
in robotics. Consider, for example, moving an indoor mobileobot. The rst
plan yields a collision-free path through the building. Thesecond plan transforms
the route into one that satis es di erential constraints based on wheel motions
(recall Figure 1.11). The third plan considers how to move throbot along the
path at various speeds while satisfying momentum considéians. The fourth
plan incorporates feedback to ensure that the robot stays a&fose as possible to
the planned path in spite of unpredictable behavior. Furtheelaboration on this
approach and its trade-o s appears in Section 14.6.1.

Hierarchical inclusion Under hierarchical inclusion, a plan is incorporated as
an action in a larger plan. The original plan can be imaginedsaa subroutine
in the larger plan. For this to succeed, it is important for tke original plan to

guaranteetermination, so that the larger plan can execute more actions as needed.

Hierarchical inclusion can be performed any number of timesesulting in a rooted
tree of plans. This leads to a general model diierarchical planning Each vertex
in the tree is a plan. The root vertex represents thenaster plan The children

24 S. M. LaValle: Planning Algorithms

of any vertex are plans that are incorporated as actions in ¢hplan of the vertex.
There is no limit to the tree depth or number of children per vegex. In hierarchical
planning, the line between machine and environment is drawin multiple places.
For example, the environmentE,, with respect to a machine M, might actually
include another machineM,, that interacts with its environment, E,, as depicted
in Figure 1.20. Examples of hierarchical planning appear i8ections 7.3.2 and
12.5.1.

1.5 Organization of the Book

Here is a brief overview of the book. See also the overviews hetbeginning of
Parts II{IV.

PART 1. Introductory Material

This provides very basic background for the rest of the book.

Chapter 1: Introductory Material
This chapter o ers some general perspective and includesis® motivational
examples and applications of planning algorithms.

Chapter 2: Discrete Planning

This chapter covers the simplest form of planning and can bewmsidered as
a springboard for entering into the rest of the book. From her you can
continue to Part I, or even head straight to Part Ill. Sectins 2.1 and 2.2
are most important for heading into Part Il. For Part Ill, Section 2.3 is
additionally useful.

PART II: Motion Planning

The main source of inspiration for the problems and algoriths covered in this
part is robotics. The methods, however, are general enougbr fuse in other
applications in other areas, such as computational biologgomputer-aided design,
and computer graphics. An alternative title that more accurtely re ects the kind
of planning that occurs is \Planning in Continuous State Spees."

Chapter 3: Geometric Representations and Transformations

The chapter gives important background for expressing a mon planning

problem. Section 3.1 describes how to construct geometriodels, and the
remaining sections indicate how to transform them. Sectigr8.1 and 3.2 are
important for later chapters.

Chapter 4: The Con guration Space

This chapter introduces concepts from topology and uses tineto formu-
late the con guration space which is the state space that arises in motion
planning. Sections 4.1, 4.2, and 4.3.1 are important for uatstanding most
of the material in later chapters. In addition to the previowsly mentioned



1.5. ORGANIZATION OF THE BOOK 25

sections, all of Section 4.3 provides useful background the combinatorial
methods of Chapter 6.

Chapter 5: Sampling-Based Motion Planning

This chapter introduces motion planning algorithms that hae dominated
the literature in recent years and have been applied in eldboth in and
out of robotics. If you understand the basic idea that the coguration

space represents a continuous state space, most of the cpteeshould be
understandable. They even apply to other problems in whichoatinuous
state spaces emerge, in addition to motion planning and rotics. Chapter
14 revisits sampling-based planning, but under di erentilaconstraints.

Chapter 6: Combinatorial Motion Planning

The algorithms covered in this section are sometimes callegact algorithms
because they build discrete representations without lograny information.
They are complete which means that they must nd a solution if one exists;
otherwise, they report failure. The sampling-based algohims have been
more useful in practice, but they only achieve weaker notisnof complete-
ness.

Chapter 7. Extensions of Basic Motion Planning

This chapter introduces many problems and algorithms thatra extensions
of the methods from Chapters 5 and 6. Most can be followed withasic un-
derstanding of the material from these chapters. Sectiond/covers planning
for closed kinematic chains; this requires an understandjrof the additional
material, from Section 4.4

Chapter 8: Feedback Motion Planning

This is a transitional chapter that introduces feedback int the motion plan-

ning problem but still does not introduce di erential constaints, which

are deferred until Part IV. The previous chapters of Part Il feused on
computing open-loopplans, which means that any errors that might occur
during execution of the plan are ignored, yet the plan will bexecuted as
planned. Using feedback yields alosed-loopplan that responds to unpre-
dictable events during execution.

PART IlI: Decision-Theoretic Planning

An alternative title to Part 11l is \Planning Under Uncertainty ." Most of Part I1]
addresses discrete state spaces, which can be studied imiatedly following Part
I. However, some sections cover extensions to continuous &g to understand
these parts, it will be helpful to have read some of Part II.

Chapter 9: Basic Decision Theory
The main idea in this chapter is to design the best decisionrfa decision
maker that is confronted with interference from other decisn makers. The

26 S. M. LaValle: Planning Algorithms

others may be true opponents in a game or may be ctitious in der to
model uncertainties. The chapter focuses on making a deoisiin a sin-
gle step and provides a building block for Part Il because @hning under
uncertainty can be considered as multi-step decision malkjn

Chapter 10: Sequential Decision Theory

This chapter takes the concepts from Chapter 9 and extendsem by chain-
ing together a sequence of basic decision-making probleni@ynamic pro-
gramming concepts from Section 2.3 become important here.orFall of
the problems in this chapter, it is assumed that the currenttate is always
known. All uncertainties that exist are with respect to predétion of future
states, as opposed to measuring the current state.

Chapter 11: Sensors and Information Spaces

The chapter extends the formulations of Chapter 10 into a fraework for
planning when the current state is unknown during executianinformation
regarding the state is obtained from sensor observationsathe memory of
actions that were previously applied. The information spacserves a similar
purpose for problems with sensing uncertainty as the con gation space
has for motion planning.

Chapter 12: Planning Under Sensing Uncertainty

This chapter covers several planning problems and algoritts that involve
sensing uncertainty. This includes problems such as loaation, map build-
ing, pursuit-evasion, and manipulation. All of these problas are uni ed
under the idea of planning in information spaces, which follvs from Chap-
ter 11.

PART IV: Planning Under Di erential Constraints

This can be considered as a continuation of Part Il. Here thean be both global
(obstacles) and local (di erential) constraints on the cotinuous state spaces that
arise in motion planning. Dynamical systems are also consigd, which yields
state spaces that include both position and velocity inforation (this coincides
with the notion of a state spacan control theory or a phase spacén physics and
di erential equations).

Chapter 13: Di erential Models

This chapter serves as an introduction to Part IV by introduing numerous
models that involve di erential constraints. This includes constraints that
arise from wheels rolling as well as some that arise from thgrdmics of
mechanical systems.

Chapter 14: Sampling-Based Planning Under Di erential Con-
straints
Algorithms for solving planning problems under the models dfhapter 13



1.5. ORGANIZATION OF THE BOOK [ ii S. M. LaValle: Planning Algorithms

are presented. Many algorithms are extensions of method®rfn Chapter
5. All methods are sampling-based because very little can becamplished
with combinatorial techniques in the context of di erentid constraints.

Chapter 15: System Theory and Analytical Techniques

This chapter provides an overview of the concepts and toolseekloped
mainly in control theory literature. They are complementay to the al-
gorithms of Chapter 14 and often provide important insight®r components
in the development of planning algorithms under di erenti& constraints.



Bibliography

[1] L. Blum, F. Cucker, and M. Schub abd S. Smale.Complexity and Real
Computation. Springer-Verlag, Berlin, 1998.

[2] M. Buckland. Al Techniques for Game Programming Premier Press, Port-
land, OR, 2002.

[3] H. Chang and T. Y. Li. Assembly maintainability study with mation plan-
ning. In Proceedings IEEE International Conference on Robotics & Aoma-
tion, pages 1012{1019, 1995.

[4] P. Cheng and S. M. LaValle. Reducing metric sensitivityni randomized
trajectory design. In Proceedings IEEE/RSJ International Conference on
Intelligent Robots and Systemsages 43{48, 2001.

[5] S. Chien, R. Sherwood, D. Tran, B. Cichy, D. Mandl, S. FryeB. Trout,
S. Shulman, and D. Boyer. Using autonomy ight software to impove science
return on Earth Observing One.Journal of Aerospace Computing, Informa-
tion, and Communication 2:196{216, April 2005.

[6] J. Cores. Motion Planning Algorithms for General Closed-Chain Mecha
nisms. PhD thesis, Institut National Polytechnique de Toulouse, dulouse,
France, 2003.

[7] D. Hahnel D. Fox, W. Burgard, and S. Thrun. A highly e cient FastSLAM
algorithm for generating cyclic maps of large-scale envirments from raw
laser range measurements. IRroceedings IEEE/RSJ International Confer-
ence on Intelligent Robots and System2003.

[8] J. Funge.Arti cial Intelligence for Computer Games. A. K. Peters, Wellesley,
MA, 2004.

[9] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory and
Practice. Morgan Kaufman, San Francisco, CA, 2004.

[10] S. K. Gupta, D. A. Bourne, K. Kim, and S. S. Krishnan. Automé#ed process
planning for robotic sheet metal bending operationslournal of Manufactur-
ing Systems 17(5):338{360, 1998.

iv BIBLIOGRAPHY

[11] J. W. Hartmann. Counter-Intuitive Behavior in Locally Optimal Solar Sail
Escape Trajectories PhD thesis, University of lllinois, Urbana, IL, May 2005.

[12] Y. Hirano, K. Kitahama, and S. Yoshizawa. Image-based ddijt recogni-
tion and dextrous hand/arm motion planning using RRTs for gasping in
cluttered scene. InProceedings IEEE/RSJ International Conference on In-
telligent Robots and System£005.

[13] J. E. Hopcroft, J. D. Ullman, and R. Motwani. Introduction to Automata
Theory, Languages, and ComputatianAddison-Wesley, Reading, MA, 2000.

[14] M. Kallmann, A. Aubel, T. Abaci, and D. Thalmann. Planning ollision-free
reaching motions for interactive object manipulation and @asping. Euro-
graphics 22(3), 2003.

[15] R. M. Karp. On-line algorithms versus o -line algoritms: How much is it
worth to know the future? In Proceedings World Computer Congres4992.

[16] Y. Koga, K. Kondo, J. Ku ner, and J.-C. Latombe. Planning motions with
intentions. Proceedings ACM SIGGRAPH pages 395{408, 1994.

[17] J. J. Kuner. Some Computed Examples [using RRT-Connect]Online],
2001. Available at http://www.ku ner.org/james/plan/exa mples.html.

[18] J. J. Ku ner, K. Nishiwaki, M. Inaba, and H. Inoue. Motion planning for
humanoid robots. InProceedings International Symposium on Robotics Re-
search 2003.

[19] M. Lau and J. J. Ku ner. Behavior planning for characteranimation. In
Proceedings Eurographics/SIGGRAPH Symposium on Computemination,
2005.

[20] New York University. MathMol Library. Scienti c Visualization Center.
Available from http://www.nyu.edu/pages/mathmol/librar y/, 2005.

[21] C. H. Papadimitriou and M. Yannakakis. Shortest paths wvthout a map.
Theoretical Computer Science84:127{150, 1991.

[22] J. Reif and Z. Sun. On frictional mechanical systems artldeir computational
power. SIAM Journal on Computing 32(6):1449{1474, 2003.

[23] M. Sipser. Introduction to the Theory of Computation PWS, Boston, MA,
1997.

[24] D. Sleator and R. Tarjan. Amortized e ciency of list updae and paging
rules. Communications of the ACM 28(2):202{208, 1985.



BIBLIOGRAPHY %

[25] D. Smith, J. Frank, and A. bnsson. Bridging the gap betwen planning and
scheduling. Knowledge Engineering Reviemd5(1):47{83, 2000.

[26] S. J. J. Smith, D. S. Nau, and T. Throop. Computer bridge: Aig win for
Al planning. Al Magazine, 19(2):93{105, 1998.



